Java下使用opencv进行人脸检测
工作需要,研究下人脸识别,发现opencv比较常用,尽管能检测人脸,但识别率不高,多数是用来获取摄像头的视频流的,提取里面的视频帧,实现人脸识别时通常会和其他框架搭配使用,比如face_recognition、SeetaFace Engine、Facenet。不过这里先简单介绍下opencv在java下的使用(网上大多都是C++的demo,这里是使用其java接口,还提供了python的接口)。
这里简单说下opencv(版本为340)的安装
window下直接运行opencv-3.4.0-vc14_vc15.exe即可,java下用到的只有里面的opencv-340.jar和opencv_java340.dll,官网下载或者直接下载java部分。
1、 将build\java\opencv-340.jar导入到项目中,
2、 根据操作系统版本,将build\java\x64\opencv_java340.dll放在%JAVA_HONE%\bin下(这里只要放在System.getProperty("java.library.path")下目录即可)。
3、 在代码中使用System.loadLibrary(Core.NATIVE_LIBRARY_NAME);加载。
在sources\data下都是模型文件,opencv使用这些xml建模(CascadeClassifier)分析人脸,这里只用到haar下的正脸和人眼模型文件。
下面的demo修改自网上的例子,原为单独检测人脸,发现会将只有鼻子的部分也识别为人脸,所以修改为使用两个CascadeClassifier同时检测人脸和人眼,同时存在才确认为人脸目标,提高准确率,不过识别的时间较原来的长。
Demo
package opencv;
import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.Videoio;
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.util.Random;
public class MyDemo extends JPanel {
private BufferedImage mImg;
/**
* 转换图像
* @param mat
* @return
*/
private BufferedImage mat2BI(Mat mat){
int dataSize = mat.cols()*mat.rows()*(int)mat.elemSize();
byte[] data = new byte[dataSize];
mat.get(0, 0,data);
int type = mat.channels()==1? BufferedImage.TYPE_BYTE_GRAY:BufferedImage.TYPE_3BYTE_BGR;
if(type == BufferedImage.TYPE_3BYTE_BGR){
for(int i=0;i<dataSize;i+=3){
byte blue=data[i+0];
data[i+0]=data[i+2];
data[i+2]=blue;
}
}
BufferedImage image=new BufferedImage(mat.cols(),mat.rows(),type);
image.getRaster().setDataElements(0, 0, mat.cols(), mat.rows(), data);
return image;
}
@Override
public void paint(Graphics g){
if(mImg!=null){
g.drawImage(mImg, 0, 0, mImg.getWidth(),mImg.getHeight(),this);
}
}
/**
* opencv实现人脸识别,同时检测到人脸和人眼时才截图
* @param img
*/
public static Mat detectFace(Mat img) {
System.out.println("Running DetectFace ... ");
// 从配置文件lbpcascade_frontalface.xml中创建一个人脸识别器,该文件位于opencv安装目录中
CascadeClassifier faceDetector = new CascadeClassifier("C:\\env\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml");
CascadeClassifier eyeDetector = new CascadeClassifier("C:\\env\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_eye.xml");
// 在图片中检测人脸
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(img, faceDetections);
//System.out.println(String.format("Detected %s faces", faceDetections.toArray().length));
Rect[] rects = faceDetections.toArray();
Random r = new Random();
if(rects != null && rects.length >= 1){
for (Rect rect : rects) {
//画矩形
Imgproc.rectangle(img, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height),
new Scalar(0, 0, 255), 2);
// Imgproc.circle(img, new Point(rect.x + rect.width, rect.y + rect.height), cvRound((rect.width + rect.height) * 0.25),
// new Scalar(0, 0, 255), 2);
//识别人眼
Mat faceROI = new Mat(img, rect );
MatOfRect eyesDetections = new MatOfRect();
eyeDetector.detectMultiScale( faceROI, eyesDetections);
System.out.println("Running DetectEye ... "+ eyesDetections);
if( eyesDetections.toArray().length > 1){
save(img, rect, "C:\\Users\\TR\\Desktop\\demo\\test\\"+r.nextInt(2000)+".jpg");
}
}
}
return img;
}
/**
* opencv将人脸进行截图并保存
* @param img
*/
private static void save(Mat img, Rect rect, String outFile){
Mat sub = img.submat(rect);
Mat mat = new Mat();
Size size = new Size(300, 300);
Imgproc.resize(sub, mat, size);
Imgcodecs.imwrite(outFile, mat);
}
public static void main(String[] args) {
try{
//加载opencv库
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
//获取摄像头视频流
VideoCapture capture = new VideoCapture(0);
int height = (int)capture.get(Videoio.CAP_PROP_FRAME_HEIGHT);
int width = (int)capture.get(Videoio.CAP_PROP_FRAME_WIDTH);
if(height == 0||width == 0){
throw new Exception("camera not found!");
}
//使用Swing生成GUI
JFrame frame = new JFrame("camera");
frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
MyDemo panel = new MyDemo();
frame.setContentPane(panel);
frame.setVisible(true);
frame.setSize(width+frame.getInsets().left+frame.getInsets().right,
height+frame.getInsets().top+frame.getInsets().bottom);
Mat capImg = new Mat();
Mat temp=new Mat();
//Random r = new Random();
while(frame.isShowing()){
//获取视频帧
capture.read(capImg);
//转换为灰度图
Imgproc.cvtColor(capImg, temp, Imgproc.COLOR_RGB2GRAY);
//识别人脸
Mat image = detectFace(capImg);
//转为图像显示
panel.mImg = panel.mat2BI(image);
panel.repaint();
}
capture.release();
frame.dispose();
}catch(Exception e){
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw);
e.printStackTrace(pw);
System.out.println(sw.toString());
}
finally{
System.out.println("Exit");
}
}
}
---------------------
作者:Cceking
来源:CSDN
原文:https://blog.csdn.net/cceking/article/details/80868314
版权声明:本文为博主原创文章,转载请附上博文链接!