构建决策树模型,使用sklearn框架:
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
# tongji_nochronic_member_benren_pd which is a pandas dataframe
X = tongji_nochronic_member_benren_pd[select2]
y = tongji_nochronic_member_benren_pd[["TimesLabel"]]
#y = tongji_nochronic_member_benren_pd[["PaymentLabel"]]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = DecisionTreeClassifier(max_leaf_nodes=10, max_depth = 6, random_state=0,class_weight='balanced')
clf.fit(X_train, y_train)
生成的决策树的基本信息如下: DecisionTreeClassifier(class_weight='balanced', criterion='gini', max_depth=6, max_features=None, max_leaf_nodes=10, min_impurity_decrease=0.0, min_impurity_split