偶然在面试题里面看到这个题所以就在Leetcode上找了一下,不过Leetcode上的比较简单一点。
题目:
Given a binary tree, find the maximum path sum.
For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child connections. The path must contain at least one node and does not need to go through the root.
For example:
Given the below binary tree,
1
/ \
2 3
Return 6
.
暴力解法就是将每一个节点作为开始节点,寻找最大的路径长度,感觉和在一个整数序列中寻找和最大的子序列差不多,不同的是每一个开始节点有几条不同的路。再仔细想一想就知道,每一条路径肯定都有一个最高的节点,把每一个节点作为一条路径的最高节点并且是这个路径的末端节点,可以应用递归来解决这个问题。假设节点x为这条路径的最高节点和末端节点,求得这条路径的函数为maxpath(x)=max(maxpath(x->left)+x->val, maxpath(x->right)+x->val, x->val) 。调用根节点的maxpath可以计算出以每个节点为最高节点和末端节点的路径的最大值,那以该节点为最高节点的路径的最大值为maxpath(x)或者maxpath(x->left)+maxpath(x->right)+x->val,可以用MAX记录这个值,最后函数返回MAX
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int MAX = -;
int maxPathSum(TreeNode* root) {
maxpath(root);
return MAX;
}
int maxpath(TreeNode *node){
if(node == NULL)
return ;
else{
int x = maxpath(node->left), y = maxpath(node->right);
int maxlen = x+node->val > node->val? x+node->val:node->val;
int result = maxlen > y+node->val?maxlen:y+node->val;
MAX = result>MAX?result:MAX;
MAX = x+y+node->val>MAX? x+y+node->val:MAX;
return result;
}
} };