1.1Bearbeiten
- {\displaystyle \int _{0}^{\infty }{\frac {\arctan \left({\frac {x}{z}}\right)}{e^{2\pi x}-1}}\,dx={\frac {1}{2}}\log \left({\frac {z!\,e^{z}}{z^{z}\,{\sqrt {2\pi z}}}}\right)\qquad {\text{Re}}(z)>0}
Ersetze {\displaystyle \arctan \left({\frac {x}{z}}\right)} durch {\displaystyle \int _{0}^{\infty }\sin(tx)\,{\frac {e^{-zt}}{t}}\,dt} und vertausche die Integrationsreihenfolge.
Man erhält {\displaystyle \int _{0}^{\infty }\int _{0}^{\infty }{\frac {\sin(tx)}{e^{2\pi x}-1}}\,dx\,\,{\frac {e^{-zt}}{t}}\,dt}.
Nach der Formel {\displaystyle \int _{0}^{\infty }{\frac {\sin(\alpha x)}{e^{\beta x}-1}}\,dx={\frac {\pi }{2\beta }}\,\coth \left({\frac {\alpha \pi }{\beta }}\right)-{\frac {1}{2\alpha }}}
ist nun {\displaystyle \int _{0}^{\infty }{\frac {\sin(tx)}{e^{2\pi x}-1}}\,dx={\frac {1}{4}}\coth \left({\frac {t}{2}}\right)-{\frac {1}{2t}}}.
Letzter Ausdruck lässt sich auch schreiben als {\displaystyle {\frac {1}{2}}\left({\frac {1}{2}}-{\frac {1}{t}}+{\frac {1}{e^{t}-1}}\right)}.
Damit ist die zweite Binetsche Formel auf die erste zurückgeführt.