题目链接:
题目
Greatest Common Increasing Subsequence
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/32768 K (Java/Others)
问题描述
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
输入
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
输出
output print L - the length of the greatest common increasing subsequence of both sequences.
样例
input
1
5
1 4 2 5 -12
4
-12 1 2 4
output
2
题意
求两个串的最长公共上升子序列(LCIS)
题解
dp[j]表示第一个串的前i个和第二个串的前j个的以b[j]结尾的公共最长上升子序列的长度。
代码
O(n^3):
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 555;
int dp[maxn];
int a[maxn], b[maxn];
int n, m;
void init() {
memset(dp, 0, sizeof(dp));
}
int main() {
int tc;
scanf("%d", &tc);
while (tc--) {
init();
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
scanf("%d", &m);
for (int i = 1; i <= m; i++) scanf("%d", &b[i]);
int ans = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (a[i] == b[j]) {
dp[j] = 1;//b[0]是非法的!
for (int k = 0; k < j; k++) {
if (b[k] < b[j] && dp[j] < dp[k] + 1) {
dp[j] = dp[k] + 1;
}
}
}
ans = max(ans, dp[j]);
}
}
printf("%d\n", ans);
if (tc) printf("\n");
}
return 0;
}
O(n^2):k循环其实可以不用,用Max一边扫j,一边记录就可以了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 555;
int dp[maxn];
int a[maxn], b[maxn];
int n, m;
void init() {
memset(dp, 0, sizeof(dp));
}
int main() {
int tc;
scanf("%d", &tc);
while (tc--) {
init();
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
scanf("%d", &m);
for (int i = 1; i <= m; i++) scanf("%d", &b[i]);
int ans = 0;
for (int i = 1; i <= n; i++) {
int Max = 0;
for (int j = 1; j <= m; j++) {
if (b[j]<a[i]&&Max<dp[j]) {
Max = dp[j];
}
else if (a[i] == b[j]) {
dp[j] = Max + 1;
}
ans = max(ans, dp[j]);
}
}
printf("%d\n", ans);
if (tc) printf("\n");
}
return 0;
}