Markdown mathematical notation

https://latex.codecogs.com/eqneditor/editor.php

代码 结果
a+b $a+b$
x_1^2 $x_1^2$
x_{22} $x_{22}$
x^{(n)} $x^{(n)}$
^*x^* $*x*$
\frac{x+y}{2} $\frac{x+y}{2}$
\frac{1}{1+\frac{1}{2}} $\frac{1}{1+\frac{1}{2}}$
\sqrt[3]{3} $\sqrt[3]{3}$
\sqrt[3]{1+\sqrt[3]{3}} $\sqrt[3]{1+\sqrt[3]{3}}$
\sum_{k=1}^{n} \frac{1}{1+k} $\sum_{k=1}^{n} \frac{1}{1+k}$
lim^{x \to \infty}_{y \to 0}{\frac{x}{y}} $\lim^{x \to \infty}_{y \to 0}{\frac{x}{y}}$
\displaystyle \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}} $\displaystyle \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}}$
\int_{a}^{b} \frac{1}{1+x} dx $\int_{a}^{b} \frac{1}{1+x} dx$
\int_{a}^{b} f(x)dx $\int_{a}^{b} f(x)dx$
\int_a^b f(x) \, dx $\int_a^b f(x) , dx$
\iint $\iint$
\displaystyle \int $\displaystyle \int$
\partial $\partial$
\pm $\pm$
\mp $\mp$
\times $\times$
\div $\div$
\mid or | $\mid$
\cdot $\cdot$
\ast $\ast$
$\forall$ $\forall$
$\exists$ $\exists$
$\nabla$ $\nabla$
\triangle $\triangle$
\leq $\leq$
\geq $\geq$
\leqslant $\leqslant$
\ngeq $\ngeq$
\approx $\approx$
\neq $\neq$
\infty $\infty$
\cdots $\cdots$
\prod $\prod$
\sim $\sim$
\rightarrow $\rightarrow$
\Rightarrow $\Rightarrow$
\xrightarrow[hello]{world} $\xrightarrow[hello]{world}$
\Longrightarrow $\Longrightarrow$
$\Leftrightarrow$ $\Leftrightarrow$
\in $\in$
\notin $\notin$
\subset \supset $\subset \supset$
\subseteq \supseteq $\subseteq \supseteq$
\cup \cap $\cup \cap$
a \! b $a!b$
a b $ab$
a \, b $a,b$
a \; b $a;b$
a\ b $a\ b$
a \quad b $a\quad b$
a \qquad b $a\qquad b$
\vec{a} $\vec{a}$
\dot{x} $\dot{x}$
\ddot{x} $\ddot{x}$
\bar{a} $\bar{a}$
\hat{a} $\hat{a}$
\stackrel{\rm def}{=} $\stackrel{\rm def}{=}$
a \atop = $a \atop =$
a \choose b $a \choose b$
\imath、\jmath $\imath、\jmath$
\overline{xyz} $\overline{xyz}$
\underline{x+y} $\underline{x+y}$
() $()$
[] $[]$
\{ \} ${ }$
\lbrace \rbrace $\lbrace \rbrace$
\langle \rangle $\langle \rangle$
\Bigg( \bigg( \Big( \big( ( $\Bigg( \bigg( \Big( \big( ($
\| $|$
\because $\because$
\therefore $\therefore$
\left( \sum_{i=1}^n \frac{x^2}{1-x} \right) $\left( \sum_{i=1}^n \frac{x^2}{1-x} \right)$
\begin{matrix} 1&2 \\\\ 3&4 \end{matrix} $\begin{matrix} 1&2 \\ 3&4 \end{matrix}$
\begin{pmatrix} 1&2 \\\\ 3&4 \end{pmatrix} $\begin{pmatrix} 1&2 \\ 3&4 \end{pmatrix}$
\begin{bmatrix} 1&2 \\\\ 3&4 \end{bmatrix} $\begin{bmatrix} 1&2 \\ 3&4 \end{bmatrix}$
\begin{vmatrix} 1&2 \\\\ 3&4 \end{vmatrix} $\begin{vmatrix} 1&2 \\ 3&4 \end{vmatrix}$
\begin{Vmatrix} 1&2 \\\\ 3&4 \end{Vmatrix} $\begin{Vmatrix} 1&2 \\ 3&4 \end{Vmatrix}$
\begin{aligned} x = {}& a+b+c+{} \\\\ &d+e+f+g \end{aligned} $\begin{aligned} x = {}& a+b+c+{} \\ &d+e+f+g \end{aligned}$
\begin{aligned} x = a+b+c+{} \\\\ &&&&&d+e+f+g \end{aligned} $\begin{aligned} x = a+b+c+{} \\ &&&&&d+e+f+g \end{aligned}$
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} $\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}$
\alpha $\alpha$
{alpha} ${alpha}$
\mbox{what} $what$
\emptyset $\emptyset$
\mathbf{R} $\mathbf{R}$
\mathbb{R} $\mathbb{R}$
\mathcal{R} $\mathcal{R}$

\mathbf{X} = \left( \begin{matrix}
x\_11 & x\_12 & \ldots \\\\
x\_21 & x\_22 & \ldots \\\\
\vdots & \vdots & \ddots
\end{matrix}  \right)

$\mathbf{X} = \left( \begin{matrix}
x_11 & x_12 & \ldots \\
x_21 & x_22 & \ldots \\
\vdots & \vdots & \ddots
\end{matrix} \right)$


\mathbf{X} = \left( \begin{array}{ccc}
x_{11} & x_{12} & \ldots \\\\
x_{21} & x_{22} & \ldots \\\\
\vdots & \vdots & \ddots
\end{array}
\right)

$\mathbf{X} = \left( \begin{array}{ccc}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}
\right)$


\begin{gathered}
a=b+c+d \\\\
x=y+z
\end{gathered}

$\begin{gathered}
a=b+c+d \\
x=y+z
\end{gathered}$


\begin{aligned}
a&=b+c+d \\\\
x&=y+z
\end{aligned}

$\begin{aligned}
a&=b+c+d \\
x&=y+z
\end{aligned}$


y=\begin{cases}
-x, \quad x \leq 0 \\\\
x, \quad x > 0
\end{cases}

$y=\begin{cases}
-x, \quad x \leq 0 \\
x, \quad x > 0
\end{cases}$


\left(
\begin{array}{|c|c|}
1&2 \\\\
\hline 
3&4
\end{array}
\right)

$\left(
\begin{array}{|c|c|}
1&2 \\
\hline
3&4
\end{array}
\right)$


\begin{array}{|c|c|}
\hline
1&2 \\\\
\hline
3&4 \\\\
\hline
\end{array}

$\begin{array}{|c|c|}
\hline
1&2 \\
\hline
3&4 \\
\hline
\end{array}$

上一篇:基于动态规划的编辑距离计算公式及应用


下一篇:高等数学之一元函数微分学