https://latex.codecogs.com/eqneditor/editor.php
代码 | 结果 |
---|---|
a+b |
$a+b$ |
x_1^2 |
$x_1^2$ |
x_{22} |
$x_{22}$ |
x^{(n)} |
$x^{(n)}$ |
^*x^* |
$*x*$ |
\frac{x+y}{2} |
$\frac{x+y}{2}$ |
\frac{1}{1+\frac{1}{2}} |
$\frac{1}{1+\frac{1}{2}}$ |
\sqrt[3]{3} |
$\sqrt[3]{3}$ |
\sqrt[3]{1+\sqrt[3]{3}} |
$\sqrt[3]{1+\sqrt[3]{3}}$ |
\sum_{k=1}^{n} \frac{1}{1+k} |
$\sum_{k=1}^{n} \frac{1}{1+k}$ |
lim^{x \to \infty}_{y \to 0}{\frac{x}{y}} |
$\lim^{x \to \infty}_{y \to 0}{\frac{x}{y}}$ |
\displaystyle \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}} |
$\displaystyle \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}}$ |
\int_{a}^{b} \frac{1}{1+x} dx |
$\int_{a}^{b} \frac{1}{1+x} dx$ |
\int_{a}^{b} f(x)dx |
$\int_{a}^{b} f(x)dx$ |
\int_a^b f(x) \, dx |
$\int_a^b f(x) , dx$ |
\iint |
$\iint$ |
\displaystyle \int |
$\displaystyle \int$ |
\partial |
$\partial$ |
\pm |
$\pm$ |
\mp |
$\mp$ |
\times |
$\times$ |
\div |
$\div$ |
\mid or |
|
$\mid$ |
\cdot |
$\cdot$ |
\ast |
$\ast$ |
$\forall$ |
$\forall$ |
$\exists$ |
$\exists$ |
$\nabla$ |
$\nabla$ |
\triangle |
$\triangle$ |
\leq |
$\leq$ |
\geq |
$\geq$ |
\leqslant |
$\leqslant$ |
\ngeq |
$\ngeq$ |
\approx |
$\approx$ |
\neq |
$\neq$ |
\infty |
$\infty$ |
\cdots |
$\cdots$ |
\prod |
$\prod$ |
\sim |
$\sim$ |
\rightarrow |
$\rightarrow$ |
\Rightarrow |
$\Rightarrow$ |
\xrightarrow[hello]{world} |
$\xrightarrow[hello]{world}$ |
\Longrightarrow |
$\Longrightarrow$ |
$\Leftrightarrow$ |
$\Leftrightarrow$ |
\in |
$\in$ |
\notin |
$\notin$ |
\subset \supset |
$\subset \supset$ |
\subseteq \supseteq |
$\subseteq \supseteq$ |
\cup \cap |
$\cup \cap$ |
a \! b |
$a!b$ |
a b |
$ab$ |
a \, b |
$a,b$ |
a \; b |
$a;b$ |
a\ b |
$a\ b$ |
a \quad b |
$a\quad b$ |
a \qquad b |
$a\qquad b$ |
\vec{a} |
$\vec{a}$ |
\dot{x} |
$\dot{x}$ |
\ddot{x} |
$\ddot{x}$ |
\bar{a} |
$\bar{a}$ |
\hat{a} |
$\hat{a}$ |
\stackrel{\rm def}{=} |
$\stackrel{\rm def}{=}$ |
a \atop = |
$a \atop =$ |
a \choose b |
$a \choose b$ |
\imath、\jmath |
$\imath、\jmath$ |
\overline{xyz} |
$\overline{xyz}$ |
\underline{x+y} |
$\underline{x+y}$ |
() |
$()$ |
[] |
$[]$ |
\{ \} |
${ }$ |
\lbrace \rbrace |
$\lbrace \rbrace$ |
\langle \rangle |
$\langle \rangle$ |
\Bigg( \bigg( \Big( \big( ( |
$\Bigg( \bigg( \Big( \big( ($ |
\| |
$|$ |
\because |
$\because$ |
\therefore |
$\therefore$ |
\left( \sum_{i=1}^n \frac{x^2}{1-x} \right) |
$\left( \sum_{i=1}^n \frac{x^2}{1-x} \right)$ |
\begin{matrix} 1&2 \\\\ 3&4 \end{matrix} |
$\begin{matrix} 1&2 \\ 3&4 \end{matrix}$ |
\begin{pmatrix} 1&2 \\\\ 3&4 \end{pmatrix} |
$\begin{pmatrix} 1&2 \\ 3&4 \end{pmatrix}$ |
\begin{bmatrix} 1&2 \\\\ 3&4 \end{bmatrix} |
$\begin{bmatrix} 1&2 \\ 3&4 \end{bmatrix}$ |
\begin{vmatrix} 1&2 \\\\ 3&4 \end{vmatrix} |
$\begin{vmatrix} 1&2 \\ 3&4 \end{vmatrix}$ |
\begin{Vmatrix} 1&2 \\\\ 3&4 \end{Vmatrix} |
$\begin{Vmatrix} 1&2 \\ 3&4 \end{Vmatrix}$ |
\begin{aligned} x = {}& a+b+c+{} \\\\ &d+e+f+g \end{aligned} |
$\begin{aligned} x = {}& a+b+c+{} \\ &d+e+f+g \end{aligned}$ |
\begin{aligned} x = a+b+c+{} \\\\ &&&&&d+e+f+g \end{aligned} |
$\begin{aligned} x = a+b+c+{} \\ &&&&&d+e+f+g \end{aligned}$ |
\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0} |
$\overbrace{a+\underbrace{b+c}_{1.0}+d}^{2.0}$ |
\alpha |
$\alpha$ |
{alpha} |
${alpha}$ |
\mbox{what} |
$what$ |
\emptyset |
$\emptyset$ |
\mathbf{R} |
$\mathbf{R}$ |
\mathbb{R} |
$\mathbb{R}$ |
\mathcal{R} |
$\mathcal{R}$ |
\mathbf{X} = \left( \begin{matrix}
x\_11 & x\_12 & \ldots \\\\
x\_21 & x\_22 & \ldots \\\\
\vdots & \vdots & \ddots
\end{matrix} \right)
$\mathbf{X} = \left( \begin{matrix}
x_11 & x_12 & \ldots \\
x_21 & x_22 & \ldots \\
\vdots & \vdots & \ddots
\end{matrix} \right)$
\mathbf{X} = \left( \begin{array}{ccc}
x_{11} & x_{12} & \ldots \\\\
x_{21} & x_{22} & \ldots \\\\
\vdots & \vdots & \ddots
\end{array}
\right)
$\mathbf{X} = \left( \begin{array}{ccc}
x_{11} & x_{12} & \ldots \\
x_{21} & x_{22} & \ldots \\
\vdots & \vdots & \ddots
\end{array}
\right)$
\begin{gathered}
a=b+c+d \\\\
x=y+z
\end{gathered}
$\begin{gathered}
a=b+c+d \\
x=y+z
\end{gathered}$
\begin{aligned}
a&=b+c+d \\\\
x&=y+z
\end{aligned}
$\begin{aligned}
a&=b+c+d \\
x&=y+z
\end{aligned}$
y=\begin{cases}
-x, \quad x \leq 0 \\\\
x, \quad x > 0
\end{cases}
$y=\begin{cases}
-x, \quad x \leq 0 \\
x, \quad x > 0
\end{cases}$
\left(
\begin{array}{|c|c|}
1&2 \\\\
\hline
3&4
\end{array}
\right)
$\left(
\begin{array}{|c|c|}
1&2 \\
\hline
3&4
\end{array}
\right)$
\begin{array}{|c|c|}
\hline
1&2 \\\\
\hline
3&4 \\\\
\hline
\end{array}
$\begin{array}{|c|c|}
\hline
1&2 \\
\hline
3&4 \\
\hline
\end{array}$