高等数学中常用的等价无穷小

x0x\rightarrow0x→0 时

(01) sinxxsin x \backsim xsinx∽x

(02) tanxxtan x \backsim xtanx∽x

(03) arcsinxxarcsin x \backsim xarcsinx∽x

(04) arctanxxarctan x \backsim xarctanx∽x

(05) ln(1+x)xln(1+x) \backsim xln(1+x)∽x

(06) ex1xe^{x} -1 \backsim xex−1∽x

(07) 1cosx12x21-cos x \backsim \frac{1}{2}x^{2}1−cosx∽21​x2

(08) xln(1+x)12x2x - ln(1 + x) \backsim \frac{1}{2}x^{2}x−ln(1+x)∽21​x2

(09) tanxsinx12x3tan x - sin x \backsim \frac{1}{2}x^{3}tanx−sinx∽21​x3

(10) arcsinxarctanx12x3arcsin x - arctan x \backsim \frac{1}{2}x^{3}arcsinx−arctanx∽21​x3

(11) tanxx13x3tan x - x \backsim \frac{1}{3}x^{3}tanx−x∽31​x3

(12) xarctanx13x3x - arctan x \backsim \frac{1}{3}x^{3}x−arctanx∽31​x3

(13) xsinx16x3x - sin x \backsim \frac{1}{6}x^{3}x−sinx∽61​x3

(14) (1+a)x1ax(1+a)^{x}-1 \backsim ax(1+a)x−1∽ax

(15) ax1lna×xa^{x}-1 \backsim lna\times xax−1∽lna×x

上一篇:题目:在同一坐标中输出sinx和cosx两条曲线


下一篇:拉格朗日乘子、KKT条件与对偶问题