解方程组x+y=2, xy-z^2=1

解方程组

{ x + y = 2 x y − z 2 = 1 (1) \left\{ \begin{aligned} x+y=2 \tag{1} \\ xy-z^2=1 \end{aligned} \right. {x+y=2xy−z2=1​(1)

解法一:韦达定理

x y − z 2 = 1 x y = z 2 + 1 xy-z^2=1 \\ xy=z^2+1 xy−z2=1xy=z2+1
根据韦达定理构造方程
t 2 − 2 t + z 2 + 1 = 0 (2) t^2-2t+z^2+1=0 \tag{2} t2−2t+z2+1=0(2)
x x x和 y y y是方程的两个解
Δ = ( − 2 ) 2 − 4 × ( z 2 + 1 ) = 4 − 4 ( z 2 + 1 ) = − 4 z 2 ⩾ 0 z 2 ⩽ 0 z 2 = 0 z = 0 \Delta=(-2)^2-4\times(z^2+1) =4-4(z^2+1) =-4z^2\geqslant0 \\ z^2\leqslant0 \\ z^2 = 0 \\ z = 0 Δ=(−2)2−4×(z2+1)=4−4(z2+1)=−4z2⩾0z2⩽0z2=0z=0
代入方程(2)
t 2 − 2 t + 1 = 0 ( t − 1 ) 2 = 0 t = 1 t^2-2t+1=0 \\ (t-1)^2=0 \\ t=1 t2−2t+1=0(t−1)2=0t=1
求得结果是
{ x = 1 y = 1 z = 0 \left\{ \begin{aligned} x=1 \\ y=1 \\ z=0 \end{aligned} \right. ⎩⎪⎨⎪⎧​x=1y=1z=0​

解法二:

x + y = 2 x+y=2 x+y=2
左右平方
x 2 + 2 x y + y 2 = 4 x^2+2xy+y^2=4 x2+2xy+y2=4

$$
xy-z^2=1 \
xy-1=z^2 \
4xy-4=4z^2 \
4xy-(x2+2xy+y2)=4z^2 \
-(x2-2xy+y2)=4z^2 \
-(x-y)2=4z2 \
4z2+(x-y)2=0 \
\because z^2 \geqslant 0 \And (x-y)^2 \geqslant 0 \
z=0 \
x-y=0 \
x=y \

\because x+y=2 \
\therefore x=y=1
$$

解法三:

x + y = 2 x = 2 − y x+y=2 \\ x=2-y \\ x+y=2x=2−y
代入
x y − z 2 = 1 ( 2 − y ) y − z 2 = 1 2 y − y 2 − z 2 = 1 y 2 − 2 y + 1 + z 2 = 0 ( y − 1 ) 2 + z 2 = 0 ( y − 1 ) 2 = 0 z 2 = 0 y = 1 z = 0 x + y = 2 x = 1 xy-z^2=1 \\ (2-y)y-z^2=1 \\ 2y-y^2-z^2=1 \\ y^2-2y+1+z^2=0 \\ (y-1)^2+z^2=0 \\ (y-1)^2=0 \\ z^2=0 \\ y=1 \\ z=0 \\ x+y=2 \\ x=1 xy−z2=1(2−y)y−z2=12y−y2−z2=1y2−2y+1+z2=0(y−1)2+z2=0(y−1)2=0z2=0y=1z=0x+y=2x=1

上一篇:C语言——while循环


下一篇:优化理论11有约束优化---Zoutendijk可行方向法