#include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_cloud.h> #include <pcl/kdtree/kdtree_flann.h> #include <vector> #include <ctime> using namespace std; int main() { srand(time(NULL)); //随机生成一个点云 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); cloud->width = 1000; cloud->height = 1; cloud->is_dense = false; cloud->points.resize(cloud->width * cloud->height); for (size_t i = 0; i < cloud->points.size(); i++) { cloud->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f); cloud->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f); cloud->points[i].z = 1024 * rand() / (RAND_MAX + 1.0f); } //定义kdtree,相当于一个容器 pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; kdtree.setInputCloud(cloud); //随机生成一个中心点 pcl::PointXYZ keypoint; keypoint.x = 1024 * rand() / (RAND_MAX + 1.0f); keypoint.y = 1024 * rand() / (RAND_MAX + 1.0f); keypoint.z = 1024 * rand() / (RAND_MAX + 1.0f); //K近邻搜索,用到两个vector,一个存下标,一个存距离中心点的长度 vector<int> KNsearch_idx; vector<float> KNsearch_dis; int K = 10; cout << "the K_nearestSearch at" << keypoint.x << " " << keypoint.y << " " << keypoint.z << endl; if (kdtree.nearestKSearch(keypoint, K, KNsearch_idx, KNsearch_dis) > 0) { for (size_t i = 0; i < KNsearch_idx.size(); i++) { cout << cloud->points[KNsearch_idx[i]].x << " " << cloud->points[KNsearch_idx[i]].y << " " << cloud->points[KNsearch_idx[i]].z << endl; cout << KNsearch_dis[i] << endl; } } //搜索半径R范围内的所有近邻 vector<int> Rsearch_idx; vector<float> Rsearch_dis; int R = 256 * rand() / (RAND_MAX + 1.0f); cout << "In " << R << " field at " << keypoint.x << " " << keypoint.y << " " << keypoint.z << endl; if (kdtree.radiusSearch(keypoint, R, Rsearch_idx, Rsearch_dis) > 0) { for (size_t i = 0; i < Rsearch_idx.size(); i++) { cout << cloud->points[Rsearch_idx[i]].x << " " << cloud->points[Rsearch_idx[i]].y << " " << cloud->points[Rsearch_idx[i]].z << endl; cout << Rsearch_dis[i] << endl; } } return 0; }