Mysql之索引优化案例

Mysql之索引优化案例

1.单表简单案例

1.1创建表

CREATE TABLE IF NOT EXISTS `article`(
`id` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
`author_id` INT (10) UNSIGNED NOT NULL,
`category_id` INT(10) UNSIGNED NOT NULL , 
`views` INT(10) UNSIGNED NOT NULL , 
`comments` INT(10) UNSIGNED NOT NULL,
`title` VARBINARY(255) NOT NULL,
`content` TEXT NOT NULL
);
INSERT INTO `article`(`author_id`,`category_id` ,`views` ,`comments` ,`title` ,`content` )VALUES
(1,1,1,1,'1','1'),
(2,2,2,2,'2','2'),
(3,3,3,3,'3','3');

查询
查询category_id 为1且comments>1的情况下,观看数量最多的文章

explain select id,author_id from article where category_id = 1 and comments > 1 order by views desc limit 1 --分析sql

Mysql之索引优化案例

1.2 问题:

type:all,全表扫描,情况不容乐观
Using filesort:文件内排序,情况不容乐观*2

如何优化,查询表的索引

show index from article --查看表索引

1.3 解决:新建索引

ALTER TABLE article ADD INDEX idx_article_ccv (category_id, comments, views)  --第一种方式
CREATE INDEX idx_article_ccv ON article (category_id, comments, views)  --第二种方式

查看优化后结果
Mysql之索引优化案例

Mysql之索引优化案例

问题:
全表扫描已解决,但是文件排序依然存在
索引不合适

删除索引之后重新建立

DROP INDEX idx_article_ccv ON article -- 删除索引
CREATE INDEX idx_article_ccv ON article (category_id,views)  --重建索引

1.4 再次执行

Mysql之索引优化案例
完美解决

2.双表简单案例

2.1创建表并插入数据

CREATE TABLE IF NOT EXISTS `class`(
`id` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
`card` INT (10) UNSIGNED NOT NULL
);
CREATE TABLE IF NOT EXISTS `book`(
`bookid` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
`card` INT (10) UNSIGNED NOT NULL
);
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card)VALUES(FLOOR(1+(RAND()*20)));
 
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card)VALUES(FLOOR(1+(RAND()*20)));

explain显示执行计划

EXPLAIN SELECT * from class LEFT JOIN book ON class.card = book.card

Mysql之索引优化案例

2.2 由于是LEFT JOIN,所以左表是主表,因此第一次索引尝试加在主表上

  • 只对左表class新增索引
CREATE INDEX idx_class_card ON class (card)
EXPLAIN SELECT * from class LEFT JOIN book ON class.card = book.card

Mysql之索引优化案例
结果:
虽然type变为index,但是扫描行数依然是全表扫描。

2.3继续改进

  • 只对右表book 新增索引
DROP INDEX idx_class_card on class --删除class表索引
CREATE INDEX idx_book_card ON book (card)
EXPLAIN SELECT * from class LEFT JOIN book ON class.card = book.card

Mysql之索引优化案例
结果:type变为ref,rows只扫描了一行。

2.4 结论

这是由于LEFT JOIN特性决定的,由于左表数据全都有,所以关键在于如何从右表进行搜索,所以右表一定要添加索引。

3.三表简单案例

3.1添加一张表

  • 在双表的基础上新增一张phone表
CREATE TABLE IF NOT EXISTS `phone`(
`phoneid` INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
`card` INT (10) UNSIGNED NOT NULL
)ENGINE = INNODB;

INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO phone(card)VALUES(FLOOR(1+(RAND()*20)));

注意:三表均没有新建索引

执行计划

EXPLAIN SELECT * from class LEFT JOIN book ON class.card = book.card LEFT JOIN phone ON book.card = phone.card

结果: 全表扫描,且使用了连接缓存

3.2改进

  • 在phone和book表新增索引
CREATE INDEX idx_phone_card ON phone(card)
CREATE INDEX idx_book_card ON book (card)
EXPLAIN SELECT * from class LEFT JOIN book ON class.card = book.card LEFT JOIN phone ON book.card = phone.card

Mysql之索引优化案例

3.3总结

  1. 语句优化应尽可能减少join语句中NestedLoop的循环总次数,即“永远用小结果集驱动大结果集”。
    优先优化NestedLoop的内层循环。
  2. 尽量保证join语句中被驱动表的条件字段添加了索引(即LEFT JOIN在右表上添加,反之亦然)。
  3. 当无法保证被驱动表的条件字段添加索引时,且内存资源充足的前提下,不妨调整join
    buffer以达到性能优化的目的。
上一篇:X-Forwarded-For 和 X-Real-IP 的区别?


下一篇:HDU4418 Time travel(期望dp 高斯消元)