\(\text{FFT}\)
#include <cstdio>
#include <cmath>
#include <iostream>
#include <cstring>
#define re register
using namespace std;
const int N = 2e6 + 1e5;
int c[N], rev[N];
char s[N];
const double Pi = acos(-1.0);
struct complex{
double x, y;
inline complex(double xx = 0, double yy = 0){x = xx, y = yy;}
inline complex operator + (const complex &b) const {return complex(x + b.x, y + b.y);}
inline complex operator - (const complex &b) const {return complex(x - b.x, y - b.y);}
inline complex operator * (const complex &b) const {return complex(x * b.x - y * b.y, x * b.y + y * b.x);}
}a[N], b[N];
inline void FFT(complex *a, int lim, int inv)
{
for(re int i = 0; i < lim; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for(re int mid = 1; mid < lim; mid <<= 1)
{
complex I = complex(cos(Pi / mid), inv * sin(Pi / mid));
for(re int i = 0; i < lim; i += mid << 1)
{
complex W = complex(1, 0);
for(re int j = 0; j < mid; j++, W = W * I)
{
complex x = a[i + j], y = W * a[i + j + mid];
a[i + j] = x + y, a[i + j + mid] = x - y;
}
}
}
}
int main()
{
scanf("%s", s);
int n = strlen(s);
for(re int i = 0; i < n; i++) a[i].x = s[n - i - 1] ^ 48;
scanf("%s", s);
int m = strlen(s);
for(re int i = 0; i < m; i++) b[i].x = s[m - i - 1] ^ 48;
int limit = 1;
while (limit < n + m - 1) limit <<= 1;
int bit = 0;
while ((1 << bit) < limit) ++bit;
for(re int i = 0; i < limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
FFT(a, limit, 1), FFT(b, limit, 1);
for(re int i = 0; i < limit; i++) a[i] = a[i] * b[i];
FFT(a, limit, -1);
for(re int i = 0; i < limit; i++) c[i] = int(a[i].x / limit + 0.5);
for(re int i = 0; i < limit; i++)
{
if (c[i] >= 10) c[i + 1] += c[i] / 10, limit = ((i + 1) == limit ? limit + 1 : limit);
c[i] %= 10;
}
while (limit && !c[limit]) --limit;
for(re int i = limit; i >= 0; i--) printf("%d", c[i]);
}
\(\text{NTT}\)
#include <cstdio>
#include <iostream>
#include <cstring>
#define re register
using namespace std;
const int N = 2e6 + 1e5;
const int P = 998244353, g = 3;
int a[N], b[N], rev[N];
char s[N];
inline int fpow(int x, int y)
{
int res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = 1LL * res * x % P;
x = 1LL * x * x % P;
}
return res;
}
inline void NTT(int *a, int lim, int inv)
{
if (lim == 1) return;
for(re int i = 0; i < lim; i++)
if (i < rev[i]) swap(a[i], a[rev[i]]);
for(re int mid = 1, I; mid < lim; mid <<= 1)
{
I = fpow(g, (P - 1) / (mid << 1));
if (inv == -1) I = fpow(I, P - 2);
for(re int i = 0, W; i < lim; i += mid << 1)
{
W = 1;
for(re int j = 0, x, y; j < mid; j++, W = 1LL * W * I % P)
{
x = a[i + j], y = 1LL * W * a[i + j + mid] % P;
a[i + j] = (x + y) % P, a[i + j + mid] = (x - y + P) % P;
}
}
}
}
int main()
{
scanf("%s", s);
int n = strlen(s);
for(re int i = 0; i < n; i++) a[i] = s[n - i - 1] ^ 48;
scanf("%s", s);
int m = strlen(s);
for(re int i = 0; i < m; i++) b[i] = s[m - i - 1] ^ 48;
int limit = 1;
while (limit < n + m - 1) limit <<= 1;
int bit = 0;
while ((1 << bit) < limit) ++bit;
for(re int i = 0; i < limit; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
NTT(a, limit, 1), NTT(b, limit, 1);
for(re int i = 0; i < limit; i++) a[i] = 1LL * a[i] * b[i] % P;
NTT(a, limit, -1);
int inv = fpow(limit, P - 2);
for(re int i = 0; i < limit; i++) a[i] = 1LL * a[i] * inv % P;
for(re int i = 0; i < limit; i++)
{
if (a[i] >= 10) a[i + 1] += a[i] / 10, limit = ((i + 1) == limit ? limit + 1 : limit);
a[i] %= 10;
}
while (limit && !a[limit]) --limit;
for(re int i = limit; i >= 0; i--) printf("%d", a[i]);
}
LG P1919