poj 3728(LCA + dp)

题目链接:http://poj.org/problem?id=3728

思路:题目的意思是求树上a -> b的路径上的最大收益(在最小值买入,在最大值卖出)。

我们假设路径a - > b 之间的LCA(a, b) = f, 并且另up[a]表示a - > f之间的最大收益,down[a]表示f - > a之间的最大收益,dp_max[a]表示a - > f之间的最大值,dp_min[a]表示a - > f之间的最小值,于是可以得出关系: ans[id] = max(max(up[a], down[b]), dp_max[b] - dp_min[a])。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int MAX_N = (50000 + 5000);
const int MAX_M = (MAX_N << 2);
const int inf = 0x3f3f3f3f;
int NE1, NE2, NE3, head1[MAX_N], head2[MAX_N], head3[MAX_N]; void Init()
{
NE1 = NE2 = NE3 = 0;
memset(head1, -1, sizeof(head1));
memset(head2, -1, sizeof(head2));
memset(head3, -1, sizeof(head3)); } int N, Q, ans[MAX_N], value[MAX_N], vis[MAX_N]; struct Edge1 {
int v, next;
} edge1[MAX_M]; void Insert1(int u, int v)
{
edge1[NE1].v = v;
edge1[NE1].next = head1[u];
head1[u] = NE1++;
} struct Edge {
int v, id, next;
} edge2[MAX_M], edge3[MAX_M]; void Insert2(int u, int v, int id, int flag)
{
if (!flag) {
edge2[NE2].v = v;
edge2[NE2].id = id;
edge2[NE2].next = head2[u];
head2[u] = NE2++;
} else {
edge3[NE3].v = v;
edge3[NE3].id = id;
edge3[NE3].next = head3[u];
head3[u] = NE3++;
}
} int parent[MAX_N];
int up[MAX_N], down[MAX_N], dp_max[MAX_N], dp_min[MAX_N]; int find(int x)
{
if (x == parent[x]) {
return x;
} int fa = parent[x];
parent[x] = find(parent[x]); up[x] = max(max(up[x], up[fa]), dp_max[fa] - dp_min[x]);
down[x] = max(max(down[x], down[fa]), dp_max[x] - dp_min[fa]);
dp_max[x] = max(dp_max[x], dp_max[fa]);
dp_min[x] = min(dp_min[x], dp_min[fa]); return parent[x];
} struct Node {
int u, v;
} node[MAX_N]; void Tarjan(int u)
{
vis[u] = 1;
parent[u] = u;
//Q;
for (int i = head2[u]; ~i; i = edge2[i].next) {
int v = edge2[i].v, id = edge2[i].id;
if (!vis[v]) continue;
int fa = find(v);
Insert2(fa, v, id, 1);
} for (int i = head1[u]; ~i; i = edge1[i].next) {
int v = edge1[i].v;
if (vis[v]) continue;
Tarjan(v);
parent[v] = u;
} //edge3
for (int i = head3[u]; ~i; i = edge3[i].next) {
int id = edge3[i].id;
find(node[id].u);
find(node[id].v);
ans[id] = max(max(up[node[id].u], down[node[id].v]), dp_max[node[id].v] - dp_min[node[id].u]);
}
} int main()
{
while (~scanf("%d", &N)) {
for (int i = 1; i <= N; ++i) {
scanf("%d", &value[i]);
up[i] = down[i] = 0;
dp_max[i] = dp_min[i] = value[i];
} Init(); for (int i = 1; i < N; ++i) {
int u, v;
scanf("%d %d", &u, &v);
Insert1(u, v);
Insert1(v, u);
} scanf("%d", &Q);
for (int i = 1; i <= Q; ++i) {
scanf("%d %d", &node[i].u, &node[i].v);
Insert2(node[i].u, node[i].v, i, 0);
Insert2(node[i].v, node[i].u, i, 0);
} memset(vis, 0, sizeof(vis));
Tarjan(1); for (int i = 1; i <= Q; ++i) printf("%d\n", ans[i]);
}
return 0;
}

上一篇:浏览器兼容性的css hack 写法


下一篇:理解C#系列 / 核心C# / 常量