def fun(x, y, w, b):
l = 0
for i in range(4):
l += (y[i] - (b + w * x[i]))**2
# l = sum(y - (b + w * x)**2 for x, y in zip(x, y)) / 8
return l / 8
# 梯度下降法
def gradient_descent():
times = 100 # 迭代次数
alpha = 0.001 # 步长
w = 0 # w的初始值
b = 0 # b的初始值
x = [0.0, 1.0, 2.0, 3.0]
y = [3.1, 4.9, 7.2, 8.9]
# 梯度下降算法
for i in range(times):
w = w - alpha / 4 * sum([x * ((b + w * x) - y) for x, y in zip(x, y)])
b = b - alpha / 4 * sum([(b + w * x) - y for x, y in zip(x, y)])
l = fun(x, y, w, b)
print("第%d次迭代:w=%f,b=%f,l=%f" % (i + 1, w, b, l))
if __name__ == "__main__":
gradient_descent()
参考:参考文章