用spring boot 2从零开始创建区块链

区块链这么火的技术,大java怎能落后,所以有了本文,主要代码参考自 Learn Blockchains by Building One , 中文翻译:用Python从零开始创建区块链 。

一、区块链对象模型的基础属性(BlockChain)

区块链的基本数据模型参考:最基本的区块链hello world(python3实现) 。主要属性如下:

    @ApiModelProperty(value = "当前交易列表", dataType = "List<Transaction>")
    @JSONField(serialize = false)
    @JsonIgnore
    private List<Transaction> currentTransactions;

    @ApiModelProperty(value = "所有交易列表", dataType = "List<Transaction>")
    private List<Transaction> transactions;

    @ApiModelProperty(value = "区块列表", dataType = "List<BlockChain>")
    @JSONField(serialize = false)
    @JsonIgnore
    private List<BlockChain> chain;

    @ApiModelProperty(value = "集群的节点列表", dataType = "Set<String>")
    @JSONField(serialize = false)
    @JsonIgnore
    private Set<String> nodes;

    @ApiModelProperty(value = "上一个区块的哈希值", dataType = "String", example = "f461ac428043f328309da7cac33803206cea9912f0d4e8d8cf2786d21e5ff403")
    private String previousHash = "";

    @ApiModelProperty(value = "工作量证明", dataType = "Integer", example = "100")
    private Integer proof = 0;

    @ApiModelProperty(value = "当前区块的索引序号", dataType = "Long", example = "2")
    private Long index = 0L;

    @ApiModelProperty(value = "当前区块的时间戳", dataType = "Long", example = "1526458171000")
    private Long timestamp = 0L;

    @ApiModelProperty(value = "当前区块的哈希值", dataType = "String", example = "g451ac428043f328309da7cac33803206cea9912f0d4e8d8cf2786d21e5ff401")
    private String hash;

注:上面有些注解来自swagger,主要为了方便生成在线文档以及直接调试rest接口。相对之前最基本的区块链hello world(python3实现)一文,每个区块中的data,在这里细分为transactions、currentTransactions。另外区块“链”本质上可以理解为链表,所以得有一个List<?> chain;此外这里引入了所谓“工作量证明”,用于验证每个区域的hash值不是随便来的,而是要达到一定规则的运算量才能获取,可以理解为控制挖矿速度的难度系数。 

 

二、BlockChain的常规操作

2.1 生成新块newBlock

    public BlockChain newBlock(Integer proof, String previousHash) {
        BlockChain block = new BlockChain();
        block.index = chain.size() + 1L;
        block.timestamp = System.currentTimeMillis();
        block.transactions.addAll(currentTransactions);
        block.proof = proof;
        block.previousHash = previousHash;
        currentTransactions.clear();
        chain.add(block);
        return block;
    }

  

2.2 生成第1个"创世"块

链表总归要有一个Head节点,区块链也不例外

   public void newSeedBlock() {
        newBlock(100, "1");
    }

约定previousHash=1的,即为所谓的"创世"块  

 

2.3 生成hash值

    public String getHash() {
        String json = jsonUtil.toJson(this.getCurrentTransactions()) +
                jsonUtil.toJson(this.getTransactions()) +
                jsonUtil.toJson(this.getChain()) +
                this.getPreviousHash() + this.getProof() + this.getIndex() + this.getTimestamp();
        hash = SHAUtils.getSHA256Str(json);
        return hash;
    }

这里把区块的主要属性:交易数据、链表中所有元素、工作量证明、区块索引号、时间戳 拼在一起,然后计算sha256。总之,这些主要属性中的任何一个属性发生变化,整个hash值就变了。

 

2.4 工作量证明

相信对区块链有了解的同学,都知道“挖矿”。为了控制挖矿的难度,得有一个规则来约束下,所以就有了这个工作量证明,这里我们模拟一个简单的策略:

    public Boolean validProof(Integer lastProof, Integer proof) {
        System.out.println("validProof==>lastProof:" + lastProof + ",proof:" + proof);
        String guessHash = SHAUtils.getSHA256Str(String.format("{%d}{%d}", lastProof, proof));
        return guessHash.startsWith("00");
    }

把上一块的proof值与本区块的proof在一起,算sha256值,如果正好前2位是00,表示证明通过。(注:0的个数越多,挖矿难度越大,有兴趣的同学可以自己调整试下)

 

2.5 区块链验证数据是否正确

为了防止区块链的节点中混入非法脏数据(或被篡改),需要一个检测数据完整性的方法

    public boolean validChain(List<BlockChain> chain) {
        if (CollectionUtils.isEmpty(chain)) {
            return false;
        }

        BlockChain previousBlock = chain.get(0);
        int currentIndex = 1;
        while (currentIndex < chain.size()) {
            BlockChain block = chain.get(currentIndex);
            if (!block.getPreviousHash().equals(previousBlock.getHash())) {
                return false;
            }

            if (!validProof(previousBlock.getProof(), block.getProof())) {
                return false;
            }
            previousBlock = block;
            currentIndex += 1;
        }
        return true;
    }

规则很简单:

a)每个区块的previousHash值,必须等于前一个块的hash值

b)  验证每个块上的proof值是否有效

 

2.6 集群中的分叉校验

区块链是一个去中心化的分布式体系,每个节点都能挖矿,挖出来的“新区块”都能加入链中,如果出现节点之间的区块链数据不一致,需要一个策略来做仲裁,可以定一个简单的规则:链最长的节点认定为有效的,其它节点都以此为准。

为了模拟这种情况,在BlockChain类的属性中,特地留了一个nodes节点列表,用于登记集群中的其它节点信息。

 public void registerNode(String address) {
        nodes.add(address);
    }

上面的方法,将把其它节点的实例(类似http://localhost:8081/),登记到节点列表中。知道了集群中所有其它节点,就可以一一检查谁的链条最长,代码如下:

    public boolean resolveConflicts() {
        int maxLength = getChain().size();
        List<BlockChain> newChain = new ArrayList<>();
        for (String node : getNodes()) {
            RestTemplate template = new RestTemplate();
            Map map = template.getForObject(node + "chain", Map.class);
            int length = MapUtils.getInteger(map, "length");
            String json = jsonUtil.toJson(MapUtils.getObject(map, "chain"));
            List<BlockChain> chain = jsonUtil.fromJson(json, new TypeReference<List<BlockChain>>() {
            });
            if (length > maxLength && validChain(chain)) {
                maxLength = length;
                newChain = chain;
            }
        }
        if (!CollectionUtils.isEmpty(newChain)) {
            this.chain = newChain;
            return true;
        }
        return false;
    }

大意是遍历整个节点,逐一请求其它节点的rest接口,获取其完整的链表,然后跟自己对比,如果比自己长的,就把自己给换掉。这样轮一圈后,自身的链表,就被替换为整个集群中最长的那个。

 

三、调试运行

为了方便调试,本文引入了swagger(不熟悉的同学可以参考spring cloud 学习(10) - 利用springfox集成swagger一文),然后加一堆rest api,跑起来,就可以直接测了:

用spring boot 2从零开始创建区块链

3.1 调用/chain查看下初始值:

{
  "chain": [
    {
      "transactions": [],
      "previousHash": "1",
      "proof": 100,
      "index": 1,
      "timestamp": 1527427873298,
      "hash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479"
    }
  ],
  "length": 1
}

可以看到就只有一个“创世”块,其previousHash为特定值1

 

3.2 调用/mine挖一块矿

{
  "previousHash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479",
  "index": 2,
  "proof": 172,
  "message": "New Block Forged",
  "transactions": [
    {
      "sender": "0",
      "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
      "amount": 1
    }
  ]
}

挖到矿(即:产生一个新的区块block),系统自动奖励本节点1个币(从transaction可以看出这一点),同时这笔奖励的交易被写入新块中。这时再来看下/chain

{
    "chain": [
        {
            "transactions": [],
            "previousHash": "1",
            "proof": 100,
            "index": 1,
            "timestamp": 1527427873298,
            "hash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479"
        },
        {
            "transactions": [
                {
                    "sender": "0",
                    "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
                    "amount": 1
                }
            ],
            "previousHash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479",
            "proof": 172,
            "index": 2,
            "timestamp": 1527427956435,
            "hash": "df079acca767eaca611383f7b1bb2b37daa3b01502f3219cb79ecddd010f7d93"
        }
    ],
    "length": 2
}

可以看到,有二个区块加入"链表"中了,可以继续再挖一块,最终/chain可能长成这样:

{
    "chain": [
        {
            "transactions": [],
            "previousHash": "1",
            "proof": 100,
            "index": 1,
            "timestamp": 1527427873298,
            "hash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479"
        },
        {
            "transactions": [
                {
                    "sender": "0",
                    "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
                    "amount": 1
                }
            ],
            "previousHash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479",
            "proof": 172,
            "index": 2,
            "timestamp": 1527427956435,
            "hash": "df079acca767eaca611383f7b1bb2b37daa3b01502f3219cb79ecddd010f7d93"
        },
        {
            "transactions": [
                {
                    "sender": "0",
                    "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
                    "amount": 1
                }
            ],
            "previousHash": "df079acca767eaca611383f7b1bb2b37daa3b01502f3219cb79ecddd010f7d93",
            "proof": 153,
            "index": 3,
            "timestamp": 1527428128077,
            "hash": "d2b50c6ae768fd48591d07a054de78d058c11f889cec15588d270f72b6e420f1"
        }
    ],
    "length": 3
}

  

3.3 调用/transactions/new 发起一笔新交易

参数如下:

{
  "amount": 1.0,
  "recepient": "block-on-other-node",
  "sender": "50130c5283e640779b4e5e7a5afd2e6b"
}

注:sender一般取为当前矿机的标识,即本节点的nodeId,接收方一般指其它节点(这里我们随便输入点内容,当作演示),然后交易的金额为“1”个币,成功后,将返回

{
  "message": "Transaction will be added to Block 4"
}  

但这时,如果调用/chain查看整个链的数据,会发现没有变化,因为这笔交易数据,只是放在本区块的currentTransactions列表中(注:该属性并未json序列化输出,忘记的同学,可以拉到本文最开头,复习下几个重要的属性)。只有下一个可用区块产生时,这笔交易才会写入新的区块中,so,我们再继续挖一块新矿,调用/mine,然后再查看/chain

{
    "chain": [
        {
            "transactions": [],
            "previousHash": "1",
            "proof": 100,
            "index": 1,
            "timestamp": 1527427873298,
            "hash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479"
        },
        {
            "transactions": [
                {
                    "sender": "0",
                    "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
                    "amount": 1
                }
            ],
            "previousHash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479",
            "proof": 172,
            "index": 2,
            "timestamp": 1527427956435,
            "hash": "df079acca767eaca611383f7b1bb2b37daa3b01502f3219cb79ecddd010f7d93"
        },
        {
            "transactions": [
                {
                    "sender": "0",
                    "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
                    "amount": 1
                }
            ],
            "previousHash": "df079acca767eaca611383f7b1bb2b37daa3b01502f3219cb79ecddd010f7d93",
            "proof": 153,
            "index": 3,
            "timestamp": 1527428128077,
            "hash": "d2b50c6ae768fd48591d07a054de78d058c11f889cec15588d270f72b6e420f1"
        },
        {
            "transactions": [
                {
                    "sender": "50130c5283e640779b4e5e7a5afd2e6b",
                    "recepient": "block-on-other-node",
                    "amount": 1
                },
                {
                    "sender": "0",
                    "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
                    "amount": 1
                }
            ],
            "previousHash": "d2b50c6ae768fd48591d07a054de78d058c11f889cec15588d270f72b6e420f1",
            "proof": 86,
            "index": 4,
            "timestamp": 1527428477991,
            "hash": "4b3c261d2f878cebbdc1ade1a09809bb647abbd990353e529f630220a53d60ed"
        }
    ],
    "length": 4
}

刚才的交易,已经被写入最后一个刚挖出的Block中。

 

3.4 模拟多节点数据不一致,使用/resolve仲裁解决

a) 再启动一个新端口的运行实例

方法一:参考下图,idea中设置运行时的环境变量,填上server.port=8081,就可以在另一个端口上启动

用spring boot 2从零开始创建区块链

方法二:在build.gradle里加一个task

task 8081 << {
	bootRun.systemProperty 'server.port', '8081'
}

然后就可以命令行下,直接gradle 8081 bootRun 

方法三:java -jar xxx.jar --name="Spring" --server.port=8081 直接在运行jar的时候指定端口

b) 调用/register 将新节点实例(即:8081端口的节点),注册到8080的节点上

参数如下:

{
  "nodes": [
    "http://localhost:8081/"
  ]
}  

反过来,把8080老节点也注册到新节点上(即:相当于两两相互注册)。注册成功后,这时调用8081新节点上的/chain ,因为这是个新节点,里面只有一个创世块,显然跟8080老节点上的数据不一致

c) 新8081节点上调用/resolve 

输出如下:

{
  "newChain": [
    {
      "transactions": [],
      "previousHash": "1",
      "proof": 100,
      "index": 1,
      "timestamp": 1527427873298,
      "hash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479"
    },
    {
      "transactions": [
        {
          "sender": "0",
          "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
          "amount": 1
        }
      ],
      "previousHash": "9fbb08a5f332baf42012b8541122eccb60a603834fa98e9b5789898022b23479",
      "proof": 172,
      "index": 2,
      "timestamp": 1527427956435,
      "hash": "df079acca767eaca611383f7b1bb2b37daa3b01502f3219cb79ecddd010f7d93"
    },
    {
      "transactions": [
        {
          "sender": "0",
          "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
          "amount": 1
        }
      ],
      "previousHash": "df079acca767eaca611383f7b1bb2b37daa3b01502f3219cb79ecddd010f7d93",
      "proof": 153,
      "index": 3,
      "timestamp": 1527428128077,
      "hash": "d2b50c6ae768fd48591d07a054de78d058c11f889cec15588d270f72b6e420f1"
    },
    {
      "transactions": [
        {
          "sender": "50130c5283e640779b4e5e7a5afd2e6b",
          "recepient": "block-on-other-node",
          "amount": 1
        },
        {
          "sender": "0",
          "recepient": "50130c5283e640779b4e5e7a5afd2e6b",
          "amount": 1
        }
      ],
      "previousHash": "d2b50c6ae768fd48591d07a054de78d058c11f889cec15588d270f72b6e420f1",
      "proof": 86,
      "index": 4,
      "timestamp": 1527428477991,
      "hash": "4b3c261d2f878cebbdc1ade1a09809bb647abbd990353e529f630220a53d60ed"
    }
  ],
  "message": "Our chain was replaced"
}

最后一行的message: Our chain was replaced 表示,本节点的区块链已经被集群其它节点中最长的那个替换掉了。

 

最后,文中演示的所有代码,已经托管在github上,地址:https://github.com/yjmyzz/springboot-blockchain-helloworld 欢迎大家Fork.

作者:菩提树下的杨过
出处:http://yjmyzz.cnblogs.com
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
上一篇:Redmine 插件 Easy Gantt 的安装与测试


下一篇:log4net 自定义Layout日志字段