接上篇继续,这次来演示下如何做动画,以及加载图片
一、动画图
import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig, ax = plt.subplots() x = np.arange(0, 2 * np.pi, 0.01) line, = ax.plot(x, np.sin(x)) def init(): line.set_ydata([np.nan] * len(x)) # Y轴值归0,Mac上加不加这句,都一样 return line, def animate(i): line.set_ydata(np.sin(x + i / 100)) # update the data. return line, ani = animation.FuncAnimation( # blit在Mac上只能设置False,否则动画有残影 fig, animate, init_func=init, interval=2, blit=False, save_count=50) init() plt.show()
基本套路是:init()函数中给定图象的初始状态,然后animate()函数中每次对函数图象动态调整一点点,最后用FuncAnimation把它们串起来。
再来看一个官网给的比较好玩的示例:
from numpy import sin, cos import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate import matplotlib.animation as animation G = 9.8 # acceleration due to gravity, in m/s^2 L1 = 1.0 # length of pendulum 1 in m L2 = 1.0 # length of pendulum 2 in m M1 = 1.0 # mass of pendulum 1 in kg M2 = 1.0 # mass of pendulum 2 in kg def derivs(state, t): dydx = np.zeros_like(state) dydx[0] = state[1] del_ = state[2] - state[0] den1 = (M1 + M2) * L1 - M2 * L1 * cos(del_) * cos(del_) dydx[1] = (M2 * L1 * state[1] * state[1] * sin(del_) * cos(del_) + M2 * G * sin(state[2]) * cos(del_) + M2 * L2 * state[3] * state[3] * sin(del_) - (M1 + M2) * G * sin(state[0])) / den1 dydx[2] = state[3] den2 = (L2 / L1) * den1 dydx[3] = (-M2 * L2 * state[3] * state[3] * sin(del_) * cos(del_) + (M1 + M2) * G * sin(state[0]) * cos(del_) - (M1 + M2) * L1 * state[1] * state[1] * sin(del_) - (M1 + M2) * G * sin(state[2])) / den2 return dydx # create a time array from 0..100 sampled at 0.05 second steps dt = 0.05 t = np.arange(0.0, 20, dt) # th1 and th2 are the initial angles (degrees) # w10 and w20 are the initial angular velocities (degrees per second) th1 = 120.0 w1 = 0.0 th2 = -10.0 w2 = 0.0 # initial state state = np.radians([th1, w1, th2, w2]) # integrate your ODE using scipy.integrate. y = integrate.odeint(derivs, state, t) x1 = L1 * sin(y[:, 0]) y1 = -L1 * cos(y[:, 0]) x2 = L2 * sin(y[:, 2]) + x1 y2 = -L2 * cos(y[:, 2]) + y1 fig = plt.figure() ax = fig.add_subplot(111, autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2)) ax.set_aspect('equal') ax.grid() line, = ax.plot([], [], 'o-', lw=2) time_template = 'time = %.1fs' time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) def init(): line.set_data([], []) time_text.set_text('') return line, time_text def animate(i): thisx = [0, x1[i], x2[i]] thisy = [0, y1[i], y2[i]] line.set_data(thisx, thisy) time_text.set_text(time_template % (i * dt)) return line, time_text ani = animation.FuncAnimation(fig, animate, np.arange(1, len(y)), interval=25, blit=False, init_func=init) plt.show()
甚至还可以创建一些艺术气息的动画:
import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation # Fixing random state for reproducibility np.random.seed(19680801) # Create new Figure and an Axes which fills it. fig = plt.figure(figsize=(5, 5)) ax = fig.add_axes([0, 0, 1, 1], frameon=False) ax.set_xlim(0, 1), ax.set_xticks([]) ax.set_ylim(0, 1), ax.set_yticks([]) # Create rain data n_drops = 50 rain_drops = np.zeros(n_drops, dtype=[('position', float, 2), ('size', float, 1), ('growth', float, 1), ('color', float, 4)]) # Initialize the raindrops in random positions and with # random growth rates. rain_drops['position'] = np.random.uniform(0, 1, (n_drops, 2)) rain_drops['growth'] = np.random.uniform(50, 200, n_drops) # Construct the scatter which we will update during animation # as the raindrops develop. scat = ax.scatter(rain_drops['position'][:, 0], rain_drops['position'][:, 1], s=rain_drops['size'], lw=0.3, edgecolors=rain_drops['color'], facecolors='none') def update(frame_number): # Get an index which we can use to re-spawn the oldest raindrop. current_index = frame_number % n_drops # Make all colors more transparent as time progresses. rain_drops['color'][:, 3] -= 1.0/len(rain_drops) rain_drops['color'][:, 3] = np.clip(rain_drops['color'][:, 3], 0, 1) # Make all circles bigger. rain_drops['size'] += rain_drops['growth'] # Pick a new position for oldest rain drop, resetting its size, # color and growth factor. rain_drops['position'][current_index] = np.random.uniform(0, 1, 2) rain_drops['size'][current_index] = 5 rain_drops['color'][current_index] = (0, 0, 0, 1) rain_drops['growth'][current_index] = np.random.uniform(50, 200) # Update the scatter collection, with the new colors, sizes and positions. scat.set_edgecolors(rain_drops['color']) scat.set_sizes(rain_drops['size']) scat.set_offsets(rain_drops['position']) # Construct the animation, using the update function as the animation director. animation = FuncAnimation(fig, update, interval=10) plt.show()
二、加载图片
import matplotlib.pyplot as plt import matplotlib.image as mpimg img = mpimg.imread('cat.png') # 随便从网上捞的一张图片,保存到当前目录下 lum_img = img[:, :, 0] # plt.figure() plt.subplot(331) plt.imshow(img) plt.subplot(332) plt.imshow(lum_img) plt.subplot(333) plt.imshow(lum_img, cmap="spring") plt.subplot(334) plt.imshow(lum_img, cmap="summer") plt.subplot(335) plt.imshow(lum_img, cmap="autumn") plt.subplot(336) plt.imshow(lum_img, cmap="winter") plt.subplot(337) plt.imshow(lum_img, cmap="hot") plt.subplot(338) plt.imshow(lum_img, cmap="cool") plt.subplot(339) plt.imshow(lum_img, cmap="bone") plt.show()
作者:菩提树下的杨过
出处:http://yjmyzz.cnblogs.com
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
出处:http://yjmyzz.cnblogs.com
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。