import os
import tab
import tensorflow as tf print "tensorflow 5.2 " from tensorflow.examples.tutorials.mnist import input_data '''
mnist = input_data.read_data_sets("/asky/tensorflow/mnist_data",one_hot=True)
print "-------------------------------------"
print "Training data size: ",mnist.train.num_examples
print "-------------------------------------"
print "Validating data size: ",mnist.validation.num_examples
print "-------------------------------------"
print "Testing data size: " ,mnist.test.num_examples
print "-------------------------------------"
print "Example training data: ",mnist.train.images[0]
print "-------------------------------------"
print "Example training data label: ",mnist.train.labels[0] batch_size = 100
xs,ys=mnist.train.next_batch(batch_size) print "X shape:",xs.shape print "Y shape:",ys.shape print "Test Tezt"
''' INPUT_NODE = 784
OUTPUT_NODE = 10 LAYER1_NODE = 500 BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 def inference(input_tensor,avg_class,weights1,biases1,weights2,biases2):
if avg_class == None:
layer1 = tf.nn.relu(tf.matmul(input_tensor,weights1)+biases1)
return tf.matmul(layer1,weights2)+biases2
else:
layer1 = tf.nn.relu(
tf.matmul(input_tensor,avg_class.average(weights1))+
avg_class.average(biases1))
return tf.matmul(layer1,avg_class.average(weights2))+avg_class.average(biases2) def train(mnist):
x = tf.placeholder(tf.float32,[None,INPUT_NODE],name='x-input')
y_ = tf.placeholder(tf.float32,[None,OUTPUT_NODE],name='y-input')
weights1 = tf.Variable(
tf.truncated_normal([INPUT_NODE,LAYER1_NODE],stddev=0.1))
biases1 = tf.Variable( tf.constant(0.1,shape=[LAYER1_NODE])) weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE,OUTPUT_NODE],stddev=0.1))
biases2 = tf.Variable(tf.constant(0.1,shape=[OUTPUT_NODE])) y = inference(x,None,weights1,biases1,weights2,biases2) global_step = tf.Variable(0,trainable=False) variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) average_y = inference(x,variable_averages,weights1,biases1,weights2,biases2) #cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(y, tf.argmax(y_, 1 ))
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y_, 1), logits=y) cross_entropy_mean = tf.reduce_mean(cross_entropy) regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) regularization = regularizer(weights1) + regularizer(weights2) loss = cross_entropy_mean + regularization learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples/BATCH_SIZE,
LEARNING_RATE_DECAY
) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) with tf.control_dependencies([train_step,variables_averages_op]):
train_op = tf.no_op(name='train') correct_prediction = tf.equal(tf.argmax(average_y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) with tf.Session() as sess:
tf.global_variables_initializer().run()
validate_feed = {x: mnist.validation.images,
y_: mnist.validation.labels}
test_feed = {x: mnist.test.images, y_: mnist.test.labels }
for i in range(TRAINING_STEPS):
if i % 1000 ==0:
validate_acc = sess.run(accuracy,feed_dict=validate_feed)
print ("After %d training step(s),validation accuracy "
"using average model is %g " %(i,validate_acc) )
xs, ys = mnist.train.next_batch(BATCH_SIZE)
sess.run(train_op,feed_dict={x: xs , y_ : ys}) test_acc = sess.run(accuracy,feed_dict=test_feed)
print ( "After %d training step(s),test accuracy using average "
"model is %g " % (TRAINING_STEPS , test_acc) ) def main(argv=None) :
mnist = input_data.read_data_sets("/asky/tensorflow/mnist_data",one_hot=True)
train(mnist) if __name__ == '__main__':
tf.app.run()