CUDA程序优化小记(七)
CUDA全称Computer Unified Device Architecture(计算机同一设备架构),它的引入为计算机计算速度质的提升提供了可能,从此微型计算机也能有与大型机相当计算的能力。可是不恰当地使用CUDA技术,不仅不会让应用程序获得提升,反而会比普通CPU的计算还要慢。最近我通过学习《GPGPU编程技术》这本书,深刻地体会到了这一点,并且用CUDA Runtime应用改写书上的例子程序;来体会CUDA技术给我们计算能力带来的提升。
原创文章,反对未声明的引用。原博客地址:http://blog.csdn.net/gamesdev/article/details/18800465
上一版的程序的性能有进一步的提高,因为使用的是共享存储器和缩减树算法。可是使用共享存储器就要注意有可能出现的bank冲突(bank conflict)问题。这一版程序我们将要采取措施尽量避免bank冲突的发生。
共享存储器是CUDA中常见的一类存储器,它位于每个多处理器内,属于片上存储器(on-chip memory)。访问速度非常快,和寄存器相仿。
warp源于纺织术,意为“经纱”,和“纬纱(weft)”相对。CUDA中的SIMT控制器以warp为单位来调度线程。在CUDA中,warp是介于块(BLOCK)和线程之间的调度单位,一般以32个线程为一个warp。GPU会对每个warp进行并行的操作,如并行访问共享存储器等。
为了最大限度地提升共享存储器的带宽,共享存储器被分为若干个内存块,称作bank。bank的特点是能够被同时访问。这些能够被同时访问的内存可以提升GPGPU程序的并行度。
由于GPU执行的并行性,在使用共享存储器的时候可能会出现Bank冲突。具体表现在一个warp内的多个线程在同一个时刻访问相同的bank。如n个线程在同一时刻访问相同的bank,那么称之为n路bank冲突(n-way bank conflict)。由于对共享存储器的访问是以半warp为单位的,即16个线程访问bank,另外16个线程执行计算,因此在出现bank冲突的时候,这些线程会被串行化(sequentialize)。这显然不符合我们设计程序的初衷。因此我们必须设计程序的访问方式来避免bank冲突。
在上一版程序中,每次缩减步骤都会有bank被多个线程访问。在计算能力1.x规范中,共享存储器分为16个bank;在计算能力2.x和3.x规范中,这一数字为32。因此,在一个warp为32线程的情况下,会出现线程0和线程16、线程32等同时访问bank0,线程1和线程17以及线程33等同时访问bank1,由此造成bank冲突。
为了解决bank冲突,我们需要重新设计计算思路。如下图:
线程1 |
线程2 |
线程3 |
线程4 |
线程5 |
线程6 |
线程7 |
线程8 |
↓ |
↓ |
↓ |
↓ |
↙ |
↙ |
↙ |
↙ |
↓ |
↓ |
↙ |
↙ |
|
|
|
|
↓ |
↙ |
|
|
|
|
|
|
■ |
|
|
|
|
|
|
|
在第一轮,线程5、线程6、线程7和线程8将结果分别存入bank1、bank2、bank3和bank4中;第二轮线程3、线程4将结果分别存入bank1和bank2中,这样最大限度地避免了bank冲突。这样的做法也被称为等间隔访问(strided access)。
下面是这一版程序的运行结果:
下面是各个显卡处理能力的对比:
显卡 |
执行时间 |
带宽 |
GeForce 9500 GT |
0.54ms |
7416.75MB/s |
GeForce 9600M GT |
0.485ms |
8.25GB/s |
GeForce GT750M |
0.08ms |
51020.27MB/s |
下面是程序的所有源代码:
#include <cuda_runtime.h> #include <cctype> #include <cassert> #include <cstdio> #include <ctime> #define DATA_SIZE 1048576 #define BLOCK_NUM 32 #define THREAD_NUM 256 #ifndef nullptr #define nullptr 0 #endif using namespace std; ////////////////////////在设备上运行的内核函数///////////////////////////// __global__ static voidKernel_SquareSum( int* pIn, size_t* pDataSize, int*pOut, clock_t* pTime ) { // 声明一个动态分配的共享存储器 extern __shared__ int sharedData[]; const size_t computeSize =*pDataSize / THREAD_NUM; const size_t tID = size_t(threadIdx.x );// 线程 const size_t bID = size_t(blockIdx.x );// 块 int offset = 1; // 记录每轮增倍的步距 // 开始计时 if ( tID == 0 ) pTime[bID] =clock( );// 选择任意一个线程进行计时 // 执行计算 for ( size_t i = bID * THREAD_NUM+ tID; i < DATA_SIZE; i += BLOCK_NUM * THREAD_NUM ) { sharedData[tID] += pIn[i] * pIn[i]; } // 同步一个块中的其它线程 __syncthreads( ); offset = THREAD_NUM / 2; while ( offset > 0 ) { if ( offset > 0 ) { sharedData[tID] += sharedData[tID + offset]; } offset >>= 1; __syncthreads( ); } if ( tID == 0 )// 如果线程ID为,那么计算结果,并记录时钟 { pOut[bID] = sharedData[0]; pTime[bID + BLOCK_NUM] = clock( ); } } bool CUDA_SquareSum( int* pOut,clock_t* pTime, int* pIn, size_tdataSize ) { assert( pIn != nullptr ); assert( pOut != nullptr ); int* pDevIn = nullptr; int* pDevOut = nullptr; size_t* pDevDataSize = nullptr; clock_t* pDevTime = nullptr; // 1、设置设备 cudaError_t cudaStatus = cudaSetDevice( 0 );// 只要机器安装了英伟达显卡,那么会调用成功 if ( cudaStatus != cudaSuccess ) { fprintf( stderr, "调用cudaSetDevice()函数失败!" ); return false; } switch ( true) { default: // 2、分配显存空间 cudaStatus = cudaMalloc( (void**)&pDevIn,dataSize * sizeof( int) ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "调用cudaMalloc()函数初始化显卡中数组时失败!" ); break; } cudaStatus = cudaMalloc( (void**)&pDevOut,BLOCK_NUM * sizeof( int) ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "调用cudaMalloc()函数初始化显卡中返回值时失败!" ); break; } cudaStatus = cudaMalloc( (void**)&pDevDataSize,sizeof( size_t ) ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "调用cudaMalloc()函数初始化显卡中数据大小时失败!" ); break; } cudaStatus = cudaMalloc( (void**)&pDevTime,BLOCK_NUM * 2 * sizeof( clock_t ) ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "调用cudaMalloc()函数初始化显卡中耗费用时变量失败!" ); break; } // 3、将宿主程序数据复制到显存中 cudaStatus = cudaMemcpy( pDevIn, pIn, dataSize * sizeof( int ),cudaMemcpyHostToDevice ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "调用cudaMemcpy()函数初始化宿主程序数据数组到显卡时失败!" ); break; } cudaStatus = cudaMemcpy( pDevDataSize, &dataSize, sizeof( size_t ), cudaMemcpyHostToDevice ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "调用cudaMemcpy()函数初始化宿主程序数据大小到显卡时失败!" ); break; } // 4、执行程序,宿主程序等待显卡执行完毕 Kernel_SquareSum<<<BLOCK_NUM, THREAD_NUM, THREAD_NUM *sizeof( int)>>> ( pDevIn, pDevDataSize, pDevOut, pDevTime ); // 5、查询内核初始化的时候是否出错 cudaStatus = cudaGetLastError( ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "显卡执行程序时失败!" ); break; } // 6、与内核同步等待执行完毕 cudaStatus = cudaDeviceSynchronize( ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "在与内核同步的过程中发生问题!" ); break; } // 7、获取数据 cudaStatus = cudaMemcpy( pOut, pDevOut, BLOCK_NUM * sizeof( int ),cudaMemcpyDeviceToHost ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "在将结果数据从显卡复制到宿主程序中失败!" ); break; } cudaStatus = cudaMemcpy( pTime, pDevTime, BLOCK_NUM * 2 * sizeof( clock_t ), cudaMemcpyDeviceToHost ); if ( cudaStatus != cudaSuccess) { fprintf( stderr, "在将耗费用时数据从显卡复制到宿主程序中失败!" ); break; } // 8、释放空间 cudaFree( pDevIn ); cudaFree( pDevOut ); cudaFree( pDevDataSize ); cudaFree( pDevTime ); return true; } // 8、释放空间 cudaFree( pDevIn ); cudaFree( pDevOut ); cudaFree( pDevDataSize ); cudaFree( pDevTime ); return false; } void GenerateData( int* pData,size_t dataSize )// 产生数据 { assert( pData != nullptr ); for ( size_t i = 0; i <dataSize; i++ ) { srand( i + 3 ); pData[i] = rand( ) % 100; } } int main( int argc, char** argv )// 函数的主入口 { int* pData = nullptr; int* pResult = nullptr; clock_t* pTime = nullptr; // 使用CUDA内存分配器分配host端 cudaError_t cudaStatus = cudaMallocHost( &pData, DATA_SIZE * sizeof( int ) ); if ( cudaStatus != cudaSuccess ) { fprintf( stderr, "在主机中分配资源失败!" ); return 1; } cudaStatus = cudaMallocHost( &pResult, BLOCK_NUM * sizeof( int ) ); if ( cudaStatus != cudaSuccess ) { fprintf( stderr, "在主机中分配资源失败!" ); return 1; } cudaStatus = cudaMallocHost( &pTime, BLOCK_NUM * 2 * sizeof( clock_t ) ); if ( cudaStatus != cudaSuccess ) { fprintf( stderr, "在主机中分配资源失败!" ); return 1; } GenerateData( pData, DATA_SIZE );// 通过随机数产生数据 CUDA_SquareSum( pResult, pTime, pData, DATA_SIZE );// 执行平方和 // 在CPU中将结果组合起来 int totalResult; for ( inti = 0; i < BLOCK_NUM; ++i ) { totalResult += pResult[i]; } // 计算执行的时间 clock_t startTime = pTime[0]; clock_t endTime = pTime[BLOCK_NUM]; for ( inti = 0; i < BLOCK_NUM; ++i ) { if ( startTime > pTime[i] )startTime = pTime[i]; if ( endTime < pTime[i +BLOCK_NUM] ) endTime = pTime[i + BLOCK_NUM]; } clock_t elapsed = endTime - startTime; // 判断是否溢出 char* pOverFlow = nullptr; if ( totalResult < 0 )pOverFlow = "(溢出)"; else pOverFlow = ""; // 显示基准测试 printf( "用CUDA计算平方和的结果是:%d%s\n耗费用时:%d\n", totalResult, pOverFlow, elapsed ); cudaDeviceProp prop; if ( cudaGetDeviceProperties(&prop, 0 ) == cudaSuccess ) { float actualTime = float( elapsed ) / float(prop.clockRate ); printf( "实际执行时间为:%.2fms\n", actualTime ); printf( "带宽为:%.2fMB/s\n", float( DATA_SIZE * sizeof( int )>> 20 ) * 1000.0f / actualTime ); printf( "GPU设备型号:%s\n", prop.name ); } cudaFreeHost( pData ); cudaFreeHost( pResult ); cudaFreeHost( pTime ); return 0; }
参考文献:
《CUDA C Programming Guide(NVIDIA inc.)》电子书