目录
1. 问题描述
问题:对2n张牌洗牌,并求当1<=n<=100时,一共有多少个n可以使得经过2(n-1)次洗牌后,恢复最初顺序?分两种情况考虑:
Case1: 2(n-1)次洗牌后,牌恢复最初顺序
Case2: 2(n-1)次洗牌后第一次恢复顺序
Case2可以看作是case1的一种特殊情况。Case1的意思是,如果在m{其中m为2(n-1)的因子}次洗牌后回复最初顺序即可。
2. 解题分析
2.1 思路1
第一感是以下这个‘高大上’的想法:
呃。。。虽说如此,群论只学了一丢丢。。。等我先把群论学一学再来看这条路能不能走通。本系列其实出现过好几道可以用群论来解决的问题。群论学习从开始到放弃经历过好多次了,这次带着问题去学习看看能不能走得远一些。
2.2 思路2
(没有别的更炫的法子时)蛮干就是了。。。
针对每一个n,从初始状态(初始状态是什么并不重要)开始,以迭代的方式进行以上permutation操作,并判断是否回到了最初状态。
算法流程如下:
3. 代码及测试
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 9 19:33:11 2021
@author: chenxy
"""
# import sys
import time
# import datetime
# import math
# import random
# from typing import List
# from queue import Queue
# from collections import deque
# import itertools as it
import numpy as np
N = 100
ok_list = []
tStart = time.perf_counter()
for n in range(1,N+1):
start = np.arange(2*n)
p = np.zeros_like(start)
for k in range(n):
p[2*k] = start[k]
p[2*k+1] = start[n+k]
# print(p)
cur = start
cnt = 0
# recover = False
while 1:
cur = cur[p]
cnt = cnt + 1
if np.array_equal(cur, start):
# print(n, cur, start, cnt)
if (2*(n-1) % cnt) == 0:
# if (2*(n-1)) == cnt:
# print(n, cur, start, cnt)
# recover = True
ok_list.append(n)
break
if cnt > 2*(n-1):
break
# if recover:
# ok_list.append(n)
tCost = time.perf_counter() - tStart
print('length of ok_list = {0}, tCost = {1:6.3f}(sec)'.format(len(ok_list),tCost))
print(ok_list)
case1运行结果:
length of ok_list = 46, tCost = 0.046(sec)
[1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100]
case2运行结果(注释掉 "if (2*(n-1) % cnt) == 0:",打开 “ if (2*(n-1)) == cnt:)":
length of ok_list = 45, tCost = 0.059(sec)
[2, 3, 4, 6, 7, 9, 10, 12, 15, 16, 19, 21, 22, 24, 27, 30, 31, 34, 36, 37, 40, 42, 45, 49, 51, 52, 54, 55, 57, 64, 66, 69, 70, 75, 76, 79, 82, 84, 87, 90, 91, 96, 97, 99, 100]
尴尬。。。case2的结果与原书的结果不符。想不出哪里不对,哪个小伙伴看出来毛病来了请不吝指教^-^
4. 后记
两个遗留事项:
(1) 基于群论的解决方法
(2) case2的结果不对
嗯,我一定会回来的。。。
本系列总目录参见:程序员的算法趣题:详细分析和Python全解