pwnable.kr memcpy之write up

 // compiled with : gcc -o memcpy memcpy.c -m32 -lm
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <sys/mman.h>
#include <math.h> unsigned long long rdtsc(){
asm("rdtsc");
} char* slow_memcpy(char* dest, const char* src, size_t len){
int i;
for (i=; i<len; i++) {
dest[i] = src[i];
}
return dest;
} char* fast_memcpy(char* dest, const char* src, size_t len){
size_t i;
// 64-byte block fast copy
if(len >= ){
i = len / ;
len &= (-);
while(i-- > ){
__asm__ __volatile__ (
"movdqa (%0), %%xmm0\n"
"movdqa 16(%0), %%xmm1\n"
"movdqa 32(%0), %%xmm2\n"
"movdqa 48(%0), %%xmm3\n"
"movntps %%xmm0, (%1)\n"
"movntps %%xmm1, 16(%1)\n"
"movntps %%xmm2, 32(%1)\n"
"movntps %%xmm3, 48(%1)\n"
::"r"(src),"r"(dest):"memory");
dest += ;
src += ;
}
} // byte-to-byte slow copy
if(len) slow_memcpy(dest, src, len);
return dest;
} int main(void){ setvbuf(stdout, , _IONBF, );
setvbuf(stdin, , _IOLBF, ); printf("Hey, I have a boring assignment for CS class.. :(\n");
printf("The assignment is simple.\n"); printf("-----------------------------------------------------\n");
printf("- What is the best implementation of memcpy? -\n");
printf("- 1. implement your own slow/fast version of memcpy -\n");
printf("- 2. compare them with various size of data -\n");
printf("- 3. conclude your experiment and submit report -\n");
printf("-----------------------------------------------------\n"); printf("This time, just help me out with my experiment and get flag\n");
printf("No fancy hacking, I promise :D\n"); unsigned long long t1, t2;
int e;
char* src;
char* dest;
unsigned int low, high;
unsigned int size;
// allocate memory
char* cache1 = mmap(, 0x4000, , MAP_PRIVATE|MAP_ANONYMOUS, -, );
char* cache2 = mmap(, 0x4000, , MAP_PRIVATE|MAP_ANONYMOUS, -, );
src = mmap(, 0x2000, , MAP_PRIVATE|MAP_ANONYMOUS, -, ); size_t sizes[];
int i=; // setup experiment parameters
for(e=; e<; e++){ // 2^13 = 8K
low = pow(,e-);
high = pow(,e);
printf("specify the memcpy amount between %d ~ %d : ", low, high);
scanf("%d", &size);
if( size < low || size > high ){
printf("don't mess with the experiment.\n");
exit();
}
sizes[i++] = size;
} sleep();
printf("ok, lets run the experiment with your configuration\n");
sleep(); // run experiment
for(i=; i<; i++){
size = sizes[i];
printf("experiment %d : memcpy with buffer size %d\n", i+, size);
dest = malloc( size ); memcpy(cache1, cache2, 0x4000); // to eliminate cache effect
t1 = rdtsc();
slow_memcpy(dest, src, size); // byte-to-byte memcpy
t2 = rdtsc();
printf("ellapsed CPU cycles for slow_memcpy : %llu\n", t2-t1); memcpy(cache1, cache2, 0x4000); // to eliminate cache effect
t1 = rdtsc();
fast_memcpy(dest, src, size); // block-to-block memcpy
t2 = rdtsc();
printf("ellapsed CPU cycles for fast_memcpy : %llu\n", t2-t1);
printf("\n");
} printf("thanks for helping my experiment!\n");
printf("flag : ----- erased in this source code -----\n");
return ;
}

分析源码:

    size_t sizes[];
int i=; // setup experiment parameters
for(e=; e<; e++){ // 2^13 = 8K
low = pow(,e-);
high = pow(,e);
printf("specify the memcpy amount between %d ~ %d : ", low, high);
scanf("%d", &size);
if( size < low || size > high ){
printf("don't mess with the experiment.\n");
exit();
}
sizes[i++] = size;
}

从上代码中分析得到,需要输入2的n次幂和2的n+1次幂之间

// run experiment
for(i=; i<; i++){
size = sizes[i];
printf("experiment %d : memcpy with buffer size %d\n", i+, size);
dest = malloc( size );

这段代码分析得到,输入size后malloc分配空间,分配的空间大小就是我们输入的size大小。

memcpy(cache1, cache2, 0x4000);        // to eliminate cache effect
t1 = rdtsc();
slow_memcpy(dest, src, size); // byte-to-byte memcpy
t2 = rdtsc();
printf("ellapsed CPU cycles for slow_memcpy : %llu\n", t2-t1); memcpy(cache1, cache2, 0x4000); // to eliminate cache effect
t1 = rdtsc();
fast_memcpy(dest, src, size); // block-to-block memcpy
t2 = rdtsc();
printf("ellapsed CPU cycles for fast_memcpy : %llu\n", t2-t1);
printf("\n");
}

分配空间后,分别用slow_memcpy和fast_memcpy两种方式,对堆块内的数据向另外一个内存地址拷贝,并比较二者时间。那么分析一下slow_memcpy和fast_memcpy:

char* slow_memcpy(char* dest, const char* src, size_t len){
int i;
for (i=; i<len; i++) {
dest[i] = src[i];
}
return dest;
}
char* fast_memcpy(char* dest, const char* src, size_t len){
size_t i;
// 64-byte block fast copy
if(len >= 64){
i = len / 64;
len &= (64-1); while(i-- > 0){
__asm__ __volatile__ (
"movdqa (%0), %%xmm0\n"
"movdqa 16(%0), %%xmm1\n"
"movdqa 32(%0), %%xmm2\n"
"movdqa 48(%0), %%xmm3\n"
"movntps %%xmm0, (%1)\n"
"movntps %%xmm1, 16(%1)\n"
"movntps %%xmm2, 32(%1)\n"
"movntps %%xmm3, 48(%1)\n"
::"r"(src),"r"(dest):"memory");
dest += 64;
src += 64;
}
}
 

slow_memcpy是循环赋值,fast_memcpy是用asm汇编指令movdqa进行拷贝。拷贝结束后输入flag。

根据提示生成可执行程序,然后执行程序看一下:

pwnable.kr memcpy之write up

那么我们运行程序来看一下:

随便输入发现出错了:

pwnable.kr memcpy之write up

我们用gdb来看,发现了出错的位置:

pwnable.kr memcpy之write up

出错的位置,也就是movntps的执行出了问题,百度了一下movntps的用法:

movntps m128,XMM
m128 <== XMM 直接把XMM中的值送入m128,不经过cache,必须对齐16字节。再参考别人的wp:
malloc分配的堆块大小是以8字节对其的。

假设用户申请的堆块大小是a的话,malloc(a)分配的堆块大小为 8*(int((a+4)/8)+1)。

因此假设第一个malloc分配地址是16字节对齐的,则每次请求大小为16字节对齐的数据块即可成功运行结束。可以用脚本来算一下:

# coidng  = utf-8
while(1):
a = raw_input()
a = int(a)
if ((a+4)%16>=9) or ((a+4)%16==0):
print a," is true"
else:
print a," is false"

根据脚本算出来的数,我们输入得到flag:

memcpy@ubuntu:~$ ls
memcpy.c readme
memcpy@ubuntu:~$ cat readme
the compiled binary of "memcpy.c" source code (with real flag) will be executed under memcpy_pwn privilege if you connect to port 9022.
execute the binary by connecting to daemon(nc 0 9022). memcpy@ubuntu:~$ nc o 9022
nc: getaddrinfo: Name or service not known
memcpy@ubuntu:~$ nc 0 9022
Hey, I have a boring assignment for CS class.. :(
The assignment is simple.
-----------------------------------------------------
- What is the best implementation of memcpy? -
- 1. implement your own slow/fast version of memcpy -
- 2. compare them with various size of data -
- 3. conclude your experiment and submit report -
-----------------------------------------------------
This time, just help me out with my experiment and get flag
No fancy hacking, I promise :D
specify the memcpy amount between 8 ~ 16 : 9
specify the memcpy amount between 16 ~ 32 : 21
specify the memcpy amount between 32 ~ 64 : 40
specify the memcpy amount between 64 ~ 128 : 70
specify the memcpy amount between 128 ~ 256 : 135
specify the memcpy amount between 256 ~ 512 : 265
specify the memcpy amount between 512 ~ 1024 : 520
specify the memcpy amount between 1024 ~ 2048 : 1030
specify the memcpy amount between 2048 ~ 4096 : 2055
specify the memcpy amount between 4096 ~ 8192 : 5210
ok, lets run the experiment with your configuration
experiment 1 : memcpy with buffer size 9
ellapsed CPU cycles for slow_memcpy : 1497
ellapsed CPU cycles for fast_memcpy : 438 experiment 2 : memcpy with buffer size 21
ellapsed CPU cycles for slow_memcpy : 384
ellapsed CPU cycles for fast_memcpy : 411 experiment 3 : memcpy with buffer size 40
ellapsed CPU cycles for slow_memcpy : 636
ellapsed CPU cycles for fast_memcpy : 672 experiment 4 : memcpy with buffer size 70
ellapsed CPU cycles for slow_memcpy : 1134
ellapsed CPU cycles for fast_memcpy : 288 experiment 5 : memcpy with buffer size 135
ellapsed CPU cycles for slow_memcpy : 1938
ellapsed CPU cycles for fast_memcpy : 237 experiment 6 : memcpy with buffer size 265
ellapsed CPU cycles for slow_memcpy : 3633
ellapsed CPU cycles for fast_memcpy : 291 experiment 7 : memcpy with buffer size 520
ellapsed CPU cycles for slow_memcpy : 7287
ellapsed CPU cycles for fast_memcpy : 342 experiment 8 : memcpy with buffer size 1030
ellapsed CPU cycles for slow_memcpy : 13860
ellapsed CPU cycles for fast_memcpy : 441 experiment 9 : memcpy with buffer size 2055
ellapsed CPU cycles for slow_memcpy : 27561
ellapsed CPU cycles for fast_memcpy : 984 experiment 10 : memcpy with buffer size 5210
ellapsed CPU cycles for slow_memcpy : 72930
ellapsed CPU cycles for fast_memcpy : 2628 thanks for helping my experiment!
flag : 1_w4nn4_br34K_th3_m3m0ry_4lignm3nt
上一篇:关于 String,StringBuilder,StringBuffer


下一篇:web端和手机端测试有什么不同