一、fork进程分析
1.1理论分析
什么是fork:fork系统调用用于创建一个新进程,称为子进程,它与进程(称为系统调用fork的进程)同时运行,此进程称为父进程。创建新的子进程后,两个进程将执行fork()系统调用之后的下一条指令。子进程使用相同的pc(程序计数器),相同的CPU寄存器,在父进程中使用的相同打开文件。调用fork之后,数据、堆、栈有两份,代码仍然为一份但是这个代码段成为两个进程的共享代码段都从fork函数中返回。
通过fork系统调用我们可以创建进程,下面我们就梳理一下fork的大概过程,主要关注进程上下文切换已经相关函数的作用。最后在我们之前构建的gdb环境中跑一跑以验证。
进程的创建过程?致是?进程通过fork系统调?进?内核_do_fork函数,如下图所示复制进程描述符及相关进程资源(采?写时复制技术)、分配?进程的内核堆栈并对内核堆栈和thread等进程关键上下?进?初始化,最后将?进程放?就绪队列, fork系统调?返回;??进程则在被调度执?时根据设置的内核堆栈和thread等进程关键上下?开始执?:
1.2 fork的过程
进程的创建过程?致是?进程通过fork系统调?进?内核_do_fork函数,如下图所示复制进程描述符及相关进程资源(采?写时复制技术)、分配?进程的内核堆栈并对内核堆栈和thread等进程关键上下?进?初始化,最后将?进程放?就绪队列, fork系统调?返回;??进程则在被调度执?时根据设置的内核堆栈和thread等进程关键上下?开始执?:
系统调用的过程在实验二我们已经了解了——通过某个系统调用执行该系统调用的内核函数,现在我们直接来看fork对应的内核函数_do_fork。它主要调用了两个关键函数:copy_process和wake_up_new_task。其中copy_process完成复制?进程、获得pid,wake_up_new_task将?进程加?就绪队列等待调度执?。一个个来看:
copy_process:
它会用当前进程的一个副本来创建新进程并分配pid。它会复制寄存器中的值、所有与进程环境相关的部分,每个clone标志。新进程的实际启动由调用者来完成。
dup_task_struct:
copy_process会调用函数dup_task_struct。dup_task_struct复制当前进程(?进程)描述符task_struct、信息检查、初始化、把进程状态设置为TASK_RUNNING(此时?进程置为就绪态)、采?写时复制技术逐?复制所有其他进程资源
copy_thread_tls :
初始化?进程内核栈、设置?进程pid等
wake_up_new_task :
?进程创建好了进程描述符、内核堆栈等,就可以将?进程添加到就绪队列,使之有机会被调度执?,进程的创建?作就完成了,?进程就可以等待调度执?,?进程的执?从这?设定的ret_from_fork开始
1.2实验过程:
1.编写fork 示例代码,显示子进程和父进程的pid
#include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/types.h> #include <sys/wait.h> int main(int argc, char* argv[]) { int pid; pid = fork(); if(pid<0) { //error fprintf(stderr,"For Failed"); exit(-1); } else if(pid==0) { //child printf("---------------------------------------------------------- \n"); printf("this is child process,my pid is %d \n",getpid()); } else { //parent printf("---------------------------------------------------------- \n"); printf("this is Parent process, my pid id %d \n",getpid()); printf("child‘s pid is %d \n",pid); } return 0; }
在系统中使用 gcc -o fork fork.c -static 编译fork.c的代码,生成可执行文件,然后,使用 ./fork 运行代码
可以清楚的看到代码中,创建了一个新的进程,并且向父进程返回了子进程的pid,同时子进程运行同样的程序副本,返回了0
针对程序中的代码,开启qemu虚拟机进行gdb调试,首先在~/rootf/home文件夹下创建fork.c代码,同时使用gcc进行编译,开启gdb调试
cd ~/roofs/home #拷贝上面的fork代码 nano fork.c gcc -o fork fork.c -static #pwd=~/rootfs cd ../ find . -print0 | cpio --null -ov --format=newc | gzip -9 > ../rootfs.cpio.gz #pwd=~ cd ../ qemu-system-x86_64 -kernel linux-5.4.1/arch/x86/boot/bzImage -initrd rootfs.cpio.gz -S -s
在gdb调试的时候,给,__x64_sys_clone
,_do_fork
,cpoy_process
,dup_task_struct
,copy_thread_tls 打
断点,qemu下运行fork
可执行文件
实验发现,fork的代码运行的确是调用了序号为 56 的系统调用为内核函数 __x64_sys_clone
在 /linux/kernel/fork.c 中,发现, __x64_sys_clone 是调用了内核中的 _do_fork 函数。
二、execve系统调用
图示
2.1和普通系统系统调用对比
当前的可执?程序在执?,执?到execve系统调?时陷?内核态,在内核???do_execve加载可执??件,把当前进程的可执?程序给覆盖掉
。当execve系统调?返回 时,返回的已经不是原来的那个可执?程序了,?是新的可执?程序。
execve返回的是新的可执?程序执?的起点,静态链接的可执??件也就是main函数的?致位置,动态链接的可执??件还需 要ld链接好动态链接库再从main函数开始执?。
Linux系统?般会提供了execl、execlp、execle、execv、execvp和execve
等6个?以加载执? ?个可执??件的库函数,这些库函数统称为exec函数,差异在于对命令?参数和环境变量参数 的传递?式不同。
exec
函数都是通过execve
系统调?进?内核,对应的系统调?内核处理函数为sys_execve
或__x64_sys_execve
,它们都是通过调?do_execve
来具体执?加载可执??件的 ?作。
整体的调?的递进关系为:
- sys_execve()或__x64_sys_execve -> // 内核处理函数
- do_execve() –> // 系统调用函数
- do_execveat_common() -> // 系统调用函数
- __do_execve_?le ->
- exec_binprm()-> // 根据读入文件头部,寻找该文件的处理函数
- search_binary_handler() ->
- load_elf_binary() -> // 加载elf文件到内存中
- start_thread() // 开始新进程
三、进程切换
3.1进程切换时机
- ?户进程上下?中主动调?特定的系统调?进?中断上下?,系统调?返回 ?户态之前进?进程调度。
- 内核线程或可中断的中断处理程序,执?过程中发?中断进?中断上下?, 在中断返回前进?进程调度。
- 内核线程主动调?schedule函数进?进程调度
3.2进程上下?
- ?户地址空间:包括程序代码、数据、?户堆栈等。 (
CR3
寄存器代表进程??录表,即地址空间、数据) - 控制信息:进程描述符(
thread
)、内核堆栈(sp
寄存器)等。 - 进程的CPU上下?,相关寄存器的值(指令指针寄存器
ip
代表进程的CPU上下?)。
3.3进程切换过过程
- 切换?全局?录(
CR3
)以安装?个新的地址空间,这样不同进程的虚拟地 址如0x8048400
(32位x86)就会经过不同的?表转换为不同的物理地址。 - 切换内核态堆栈和进程的CPU上下?,因为进程的CPU上下?提供了内核执 ?新进程所需要的所有信息,包含所有CPU寄存器状态。
进程切换的代码:
((last) = __switch_to_asm((prev), (next))); ENTRY(__switch_to_asm) pushq %rbp pushq %rbx pushq %r12 pushq %r13 pushq %r14 pushq %r15 /* switch stack */ movq %rsp, TASK_threadsp(%rdi) movq TASK_threadsp(%rsi), %rsp popq %r15 popq %r14 popq %r13 popq %r12 popq %rbx popq %rbp jmp __switch_to END(__switch_to)
__switch_to_asm是在C代码中调?的,也就是使?call指令,?这段汇编的结尾是jmp __switch_to, __switch_to函数是C代码最后有个return,也就是ret指令。将__switch_to_asm和__switch_to结合起来,正好是call指令和ret指令的配对出现。
call指令压栈RIP寄存器到进程切换前的prev进程内核堆栈;?ret指令出栈存?RIP 寄存器的是进程切换之后的next进程的内核堆栈栈顶数据。
由此完成了进程的切换。
3.4中断上下文和进程上下文对比
中断上下文的切换
中断是由CPU实现的,所以中断上下?切换过程中最关键的栈顶寄存器sp
和指令指针寄存器 ip
是由CPU协助完成的。
进程上下文的切换
进程切换是由内核实现的(且一般情况下,进程上下文切换嵌套在中断中),所以进程上下?切换过程最关键的栈顶寄存器sp切换是通过进程描述符的thread.sp
实现的,指令指针 寄存器ip的切换是在内核堆栈切换的基础上巧妙利?call/ret
指令实现的。
四、Linux系统的一般执行过程(含中断与进程切换)
一般函数调用框架
(1)正在运?的?户态进程X。
(2)发?中断(包括异常、系统调?等),CPU完成load cs:rip(entry of a speci?c ISR),即跳转到中断处理程序??。
(3)中断上下?切换,具体包括如下?点:
- swapgs指令保存现场,可以理解CPU通过swapgs指令给当前CPU寄存器状态做了?个快照。
- rsp point to kernel stack,加载当前进程内核堆栈栈顶地址到RSP寄存器。快速系统调?是由系统调???处的汇编代码实现?户堆栈和内核堆栈的切换。
- save cs:rip/ss:rsp/r?ags:将当前CPU关键上下?压?进程X的内核堆栈,快速系统调?是由系统调???处的汇编代码实现的。
此时完成了中断上下?切换,即从进程X的?户态到进程X的内核态。
(4)中断处理过程中或中断返回前调?了schedule函数,其中完成了进程调度算法选择next进程、进程地址空间切换、以及switch_to关键的进程上下?切换等。
(5)switch_to调?了__switch_to_asm汇编代码做了关键的进程上下?切换。将当前进程X的内核堆栈切换到进程调度算法选出来的next进程(本例假定为进程Y)的内核堆栈,并完成了进程上下?所需的指令指针寄存器状态切换。之后开始运?进程Y(这?进程Y曾经通过以上步骤被切换出去,因此可以从switch_to下??代码继续执?)。
(6)中断上下?恢复,与(3)中断上下?切换相对应。注意这?是进程Y的中断处理过程中,?(3)中断上下?切换是在进程X的中断处理过程中,因为内核堆栈从进程X 切换到进程Y了。
(7)为了对应起?,中断上下?恢复的最后?步单独拿出来(6的最后?步即是7)iret - pop cs:rip/ss:rsp/r?ags,从Y进程的内核堆栈中弹出(3)中对应的压栈内容。此时完 成了中断上下?的切换,即从进程Y的内核态返回到进程Y的?户态。注意快速系统调?返回sysret与iret的处理略有不同。
(8)继续运??户态进程Y。