前置知识:莫比乌斯函数性质一(不会请点)
进入正题:
题目大意:
\(T\)组数据,每组给出\(a\),\(b\),\(d\)
求
\[
\sum_{i=1}^a \sum_{j=1}^b [\gcd(i,j)=d]
\]
解析
这题并不难
先变化一波
\[
\sum_{i=1}^a \sum_{j=1}^b [\gcd(i,j)=d] = \sum_{i=1}^a \sum_{j=1}^b [\gcd(\frac{i}{d},\frac{j}{d})=1]
\]
现在我们知道 \(i=i'*d\) , \(j=j'*d\) 。
不妨,枚举 \(i'\) 和 \(j'\) ,则 \(i'\) 最大为 \(\lfloor \frac{a}{d} \rfloor\) , \(j'\) 最大为 \(\lfloor \frac{b}{d} \rfloor\) .
上式
\[
=\sum_{i=1}^{\lfloor \frac{a}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{b}{d} \rfloor} [\gcd(i,j)=1]
\]
带入性质一
\[
\begin{aligned}
&=\sum_{i=1}^{\lfloor \frac{a}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{b}{d} \rfloor} \sum_{k|\gcd(i,j)} \mu(k) \\
&=\sum_{k=1}^{min(\lfloor \frac{a}{d} \rfloor,\lfloor \frac{b}{d} \rfloor)} \mu(k) \lfloor \frac{\lfloor \frac{a}{d} \rfloor}{k} \rfloor \lfloor \frac{\lfloor \frac{b}{d} \rfloor}{k} \rfloor \\
\end{aligned}
\]
这样还是过不了,还要用数论分块,才能过。
时间复杂度\(O(\sqrt{\lfloor \frac{a}{d} \rfloor} + \sqrt {\lfloor \frac{b}{d} \rfloor})\)
代码:
#include<cstdio>
#include<iostream>
using namespace std;
int mo[60005],vis[60005],p[60005],tot=0;
void init()
{
mo[1]=1;
for (int i=2;i<=50005;i++)
{
if (!vis[i]) p[++tot]=i,mo[i]=-1;
for (int j=1;j<=tot&&p[j]*i<=50005;j++)
{
vis[p[j]*i]=1;
if (i%p[j]==0) break;
mo[p[j]*i]=-mo[i];
}
}
for (int i=1;i<=50005;i++) mo[i]+=mo[i-1];
}
int main()
{
init();
int t;
scanf("%d",&t);
while (t--)
{
int a,b,d,ans=0;
scanf("%d%d%d",&a,&b,&d);
a=a/d,b=b/d;
for (int l=1,r;l<=min(a,b);l=r+1)
{
r=min(a/(a/l),b/(b/l));
ans+=(a/l)*(b/l)*(mo[r]-mo[l-1]);
}
printf("%d\n",ans);
}
}