目录
链接
描述
- 已 知 N 2 − 3 N + 2 = ∑ d ∣ N f ( d ) , 求 ∑ i = 1 n f ( i ) . 已知 N^2-3N+2 = \sum_{d|N}f(d), 求\sum_{i=1}^{n}f(i). 已知N2−3N+2=∑d∣Nf(d),求∑i=1nf(i).
分析
杜教筛
( g ∗ f ) ( n ) = ∑ d ∣ n g ( d ) ⋅ f ( n d ) = ∑ d ∣ n g ( n d ) ⋅ f ( d ) (g*f)(n) = \sum_{d|n}g(d)\cdot f(\frac{n}{d}) = \sum_{d|n}g(\frac{n}{d})\cdot f(d) (g∗f)(n)=d∣n∑g(d)⋅f(dn)=d∣n∑g(dn)⋅f(d)
∑
i
=
1
n
(
g
∗
f
)
(
i
)
=
∑
i
=
1
n
∑
d
∣
i
g
(
d
)
⋅
f
(
i
d
)
=
∑
d
=
1
n
g
(
d
)
⋅
S
(
⌊
n
d
⌋
)
\sum_{i=1}^{n}(g*f)(i)= \sum_{i=1}^{n}\sum_{d|i}g(d)\cdot f(\frac{i}{d})=\sum_{d=1}^{n}g(d)\cdot S(\lfloor\frac{n}{d}\rfloor)
i=1∑n(g∗f)(i)=i=1∑nd∣i∑g(d)⋅f(di)=d=1∑ng(d)⋅S(⌊dn⌋)
=
g
(
1
)
⋅
S
(
n
)
+
∑
d
=
2
n
g
(
d
)
⋅
S
(
⌊
n
d
⌋
)
⇒
=g(1)\cdot S(n)+\sum_{d=2}^{n}g(d)\cdot S(\lfloor\frac{n}{d} \rfloor) \Rightarrow
=g(1)⋅S(n)+d=2∑ng(d)⋅S(⌊dn⌋)⇒
g
(
1
)
⋅
S
(
n
)
=
∑
i
=
1
n
(
g
∗
f
)
(
i
)
−
∑
d
=
2
n
g
(
d
)
⋅
S
(
⌊
n
d
⌋
)
g(1)\cdot S(n)=\sum_{i=1}^{n}(g*f)(i)-\sum_{d=2}^{n}g(d)\cdot S(\lfloor\frac{n}{d} \rfloor)
g(1)⋅S(n)=i=1∑n(g∗f)(i)−d=2∑ng(d)⋅S(⌊dn⌋)
建模
∑
d
∣
N
f
(
d
)
⋅
1
=
(
f
∗
I
)
(
n
)
=
(
I
∗
f
)
(
n
)
=
∑
d
∣
N
1
⋅
f
(
n
d
)
,
式
中
I
(
n
)
=
1
\sum_{d|N}f(d)\cdot 1 = (f*I)(n)=(I*f)(n)=\sum_{d|N}1\cdot f(\frac{n}{d}) ,式中I(n)=1
d∣N∑f(d)⋅1=(f∗I)(n)=(I∗f)(n)=d∣N∑1⋅f(dn),式中I(n)=1
即
:
N
2
−
3
N
+
2
=
∑
d
∣
N
1
⋅
f
(
n
d
)
即:N^2-3N+2=\sum_{d|N}1\cdot f(\frac{n}{d})
即:N2−3N+2=d∣N∑1⋅f(dn)
S ( N ) = ∑ i = 1 N ( i 2 − 3 i + 2 ) − ∑ d = 2 N 1 ⋅ S ( ⌊ N d ⌋ ) = ∑ i = 1 n ( i 2 − 3 i + 2 ) − ∑ d = 2 N S ( ⌊ N d ⌋ ) S(N) =\sum_{i =1}^{N}(i^2-3i+2)-\sum_{d=2}^{N}1\cdot S(\lfloor\frac{N}{d} \rfloor)=\sum_{i =1}^{n}(i^2-3i+2)-\sum_{d=2}^{N}S(\lfloor\frac{N}{d} \rfloor) S(N)=i=1∑N(i2−3i+2)−d=2∑N1⋅S(⌊dN⌋)=i=1∑n(i2−3i+2)−d=2∑NS(⌊dN⌋)