1 PCA Principal Component Analysis
2 CA Correspondence Analysis
3 MCA Multiple corespondence Analysis
4 MFA Multiple Factor Analysis
5 HMFA Hierachical Multiple Factor Analysis
6. FAMD Factor Analysis of Mixed Data
如 1 PCA 部分
library("FactoMineR") library("factoextra") data("decathlon2") # 加载数据框 glimpse(decathlon2) df<-decathlon2[1:23,1:10] df
res.pca<-PCA(df,graph = FALSE) get_eig(res.pca) fviz_screeplot(res.pca,addlables=TRUE,ylim=c(0,50))
var<-get_pca_var(res.pca) # 提取变量结果 var head(var$coord) head(var$contrib) fviz_pca_var(res.pca,col.var = "black")
fviz_pca_var(res.pca,col.var = "contrib",gradient.cols=c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE) # 按变量的contributions 给他们上色
# 变量在不同主成分水平的贡献 fviz_contrib(res.pca,choice = "var",axes=1,top = 10) fviz_contrib(res.pca,choice="var",axes=2,top=10)
# 提取、可视化个体的pca结果 ind<-get_pca_ind(res.pca) ind head(ind$coord) fviz_pca_ind(res.pca,col.ind = "cos2",gradient.cols=c("#00AFBB", "#E7B800", "#FC4E07"),repel = TRUE)
fviz_pca_biplot(res.pca,repel = TRUE) ## Biplot of individuals and variables
# 按组别给个体上色 iris.pca<-PCA(iris[,-5],graph=FALSE) fviz_pca_ind(iris.pca,lable="none",habillage = iris$Species,palette = c("#00AFBB", "#E7B800", "#FC4E07"),addEllipses = TRUE)
参考 https://rpkgs.datanovia.com/factoextra/