莫比乌斯反演:
1. $F(n)=\sum_{d|n}f(d) \Rightarrow f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})$
2. $F(n)=\sum_{n|d}f(d) \Rightarrow f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$
1. [POI2007]Zap
题目链接:bzoj - 1101
题意:对于给定的整数a,b和d,有多少正整数对x,y,满足x$\leq$a,y$\leq$b,并且gcd(x,y)=d
思路:设$F(n)$表示gcd(x,y)为n的倍数(包括n本身)的数量,$f(n)$表示gcd(x,y)为n的数量
显然有$F(n)=\sum_{n|d}f(d)$
所以由莫比乌斯反演得$f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$,而$F(d)=\left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$(根据$F(n)$的定义理解)
代入$f(n)=\sum_{n|d}\mu(\frac{d}{n}) \left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$
令$k=\frac{d}{n}$可得$f(n)=\sum_{k=1}^{min(\left \lfloor \frac{a}{n} \right \rfloor , \left \lfloor \frac{b}{n} \right \rfloor)}\mu(k) \left \lfloor \frac{a}{kn} \right \rfloor \left \lfloor \frac{b}{kn} \right \rfloor$
预处理出$\mu(k)$的前缀和,然后整除分块计算即可
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> using namespace std; const int N = 500010; typedef long long ll; int isp[N], p[N], mu[N], sum[N]; int tot, T, a, b, d; void init(int n) { mu[1] = 1; for (int i = 2; i <= n; i++) { if (!isp[i]) { p[++tot] = i; mu[i] = -1; } for (int j = 1; j <= tot && p[j] <= n / i; j++) { isp[i * p[j]] = 1; if (0 == i % p[j]) { mu[i * p[j]] = 0; break; } else mu[i * p[j]] = -mu[i]; } } for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + mu[i]; } int main() { init(N - 5); scanf("%d", &T); while (T--) { scanf("%d%d%d", &a, &b, &d); ll res = 0; for (int l = 1, r = 1; l <= min(a / d, b / d); l = r + 1) { r = min(a / (a / l), b / (b / l)); res += 1ll * (sum[r] - sum[l - 1]) * (a / (l * d)) * (b / (l * d)); } printf("%lld\n", res); } return 0; }bzoj - 1101
2. YY的GCD
题目链接:bzoj - 2820
题意:对于给定的整数n,m,有多少正整数对x,y,满足x$\leq$n,y$\leq$m,并且gcd(x,y)为质数
思路:设$F(n)$表示gcd(x,y)为n的倍数(包括n本身)的数量,$f(n)$表示gcd(x,y)为n的数量
显然有$F(n)=\sum_{n|d}f(d)$
所以由莫比乌斯反演得$f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)$,而$F(d)=\left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$(根据$F(n)$的定义理解)
代入$f(n)=\sum_{n|d}\mu(\frac{d}{n}) \left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$
所以$res=\sum_{p\in prime}f(p)=\sum_{p\in prime}\sum_{p|d}\mu(\frac{d}{p}) \left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$
因为对于质数p的每个倍数d求$\mu(\frac{d}{p}) \left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$所得到的值和对于d的每个质因子p求$\mu(\frac{d}{p}) \left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$所得到的值是一样的
所以$res=\sum_{d=1}^{min(n,m)} \sum_{p\in{prime}\ p|d} \mu(\frac{d}{p}) \left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor$
用整数分块化简后得$\sum_{d=1}^{min(n,m)}(\left \lfloor \frac{a}{d} \right \rfloor \left \lfloor \frac{b}{d} \right \rfloor \sum_{p\in{prime}\ p|d} \mu(\frac{d}{p}))$
令$c(d)=\sum_{p\in{prime}\ p|d} \mu(\frac{d}{p})$
预处理出$c(d)$的前缀和$sum(d)$,利用整数分块计算即可
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> using namespace std; typedef long long ll; const int N = 10000010; int isp[N], p[N], mu[N]; int T, tot, n, m; ll sum[N]; void init(int n) { mu[1] = 1; for (int i = 2; i <= n; i++) { if (!isp[i]) { p[++tot] = i; mu[i] = -1; } for (int j = 1; j <= tot && p[j] <= n / i; j++) { isp[i * p[j]] = 1; if (0 == i % p[j]) { mu[i * p[j]] = 0; break; } else mu[i * p[j]] = -mu[i]; } } for (int i = 1; i <= tot; i++) for (int j = 1; p[i] * j <= n; j++) sum[p[i] * j] += mu[j]; for (int i = 1; i <= n; i++) sum[i] += sum[i - 1]; } int main() { init(N - 5); scanf("%d", &T); while (T--) { scanf("%d%d", &n, &m); ll res = 0; for (int l = 1, r = 0; l <= min(n, m); l = r + 1) { r = min(n / (n / l), m / (m / l)); res = res + 1ll * (sum[r] - sum[l - 1]) * (n / l) * (m / l); } printf("%lld\n", res); } return 0; }bzoj - 2820
3. [HAOI2011]Problem b
题目链接:bzoj - 2301
题意:对于给定的整数a,b,c,d和k,有多少正整数对x,y,满足a$\leq$x$\leq$b,c$\leq$y$\leq$d,并且gcd(x,y)=k
思路:利用第1题的结果和容斥原理即可得到答案,$res=solve(b,d)-solve(a-1,d)-solve(b,c-1)+solve(a-1,c-1)$
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> using namespace std; const int N = 50010; int isp[N], p[N], mu[N], sum[N]; int tot, T, a, b, c, d, k; inline int read() { int s = 0, f = 1; char ch = getchar(); while (ch < '0' || ch > '9') { if ('-' == ch) f = -1; ch = getchar(); } while (ch >= '0' && ch <= '9') { s = s * 10 + ch - '0'; ch = getchar(); } return s * f; } inline void write(int x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) write(x / 10); putchar(x % 10 + '0'); } void init(int n) { mu[1] = 1; for (int i = 2; i <= n; i++) { if (!isp[i]) { p[++tot] = i; mu[i] = -1; } for (int j = 1; j <= tot && p[j] <= n / i; j++) { isp[i * p[j]] = 1; if (0 == i % p[j]) { mu[i * p[j]] = 0; break; } else mu[i * p[j]] = -mu[i]; } } for (int i = 1; i <= n; i++) sum[i] = sum[i - 1] + mu[i]; } int solve(int a, int b, int n) { int res = 0, ta = a / n, tb = b / n; for (int l = 1, r = 1; l <= min(ta, tb); l = r + 1) { r = min(a / (a / l), b / (b / l)); res += (sum[r] - sum[l - 1]) * (a / (n * l)) * (b / (n * l)); } return res; } int main() { init(N - 5); T = read(); while (T--) { a = read(), b = read(), c = read(), d = read(), k = read(); int res = solve(b, d, k) - solve(a - 1, d, k) - solve(b, c - 1, k) + solve(a - 1, c - 1, k); write(res); puts(""); } return 0; }bzoj - 2301
4. [Sdoi2014]数表
题目链接:bzoj - 3529
题意:有一张n*m的数表,其第i行第j列的数值为能同时整除i和j的所有自然数之和,给定a,计算表中不大于a的数之和
思路:假设n<m,先不考虑不大于a的这个约束条件,那么$res=\sum_{i=1}^{n}\sum_{j=1}^{m}\sigma (gcd(i,j))$,其中$\sigma $表示约数之和
令$d=gcd(i,j)$,枚举d可得$res=\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{m}\sigma(d)[gcd(i,j)=d]$
将$\sigma(d)$提前得$res=\sum_{d=1}^{n}[\sigma(d)\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]]$
后半部分$\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=d]$相当于求有多少对i,j满足i$\leq n$,$j\leq m$且$gcd(i,j)=d$
后半部分用莫比乌斯化简一下得$res=\sum_{d=1}^{n}[\sigma(d)\sum_{k=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \mu(k) \left \lfloor \frac{n}{kd} \right \rfloor \left \lfloor \frac{m}{kd} \right \rfloor]$
令$T=kd$得$res=\sum_{d=1}^{n}[\sigma(d)\sum_{T=1\ d|T}^{n} \mu(\frac{T}{d}) \left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor]$
交换一下顺序得$res=\sum_{T=1}^{n}[\left \lfloor \frac{n}{T} \right \rfloor \left \lfloor \frac{m}{T} \right \rfloor \sum_{d=1\ d|T}^{n}\sigma(d) \mu(\frac{T}{d})]$
现在考虑限制条件,只有当$\sigma(d)\leq a$时,$\sigma(d) \mu(\frac{T}{d})$才对答案有贡献,所以我们先预处理出$\sigma(d)$,对询问按a排序,对$\sigma(d)$排序,当a变大时,某些$\sigma(d) \mu(\frac{T}{d})$开始对答案产生贡献,此时枚举d得倍数T,然后用树状数组维护$\sigma(d) \mu(\frac{T}{d})$的前缀和就可以计算出$\sum_{d=1\ d|T}^{n}\sigma(d) \mu(\frac{T}{d})$,这个d对别的询问也会产生贡献(询问是按a排序的),对于每个询问用整数分块计算
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> using namespace std; const int N = 100010; struct node { int n, m, a, id; }; int T, c[N], mu[N], res[N]; int isp[N], p[N], tot; node q[N], d[N]; bool cmp(node a, node b) { return a.a < b.a; } void init(int n) { mu[1] = 1; for (int i = 2; i <= n; i++) { if (!isp[i]) { p[++tot] = i; mu[i] = -1; } for (int j = 1; j <= tot && p[j] <= n / i; j++) { isp[i * p[j]] = 1; if (0 == i % p[j]) { mu[i * p[j]] = 0; break; } mu[i * p[j]] = -mu[i]; } } for (int i = 1; i <= n; i++) { d[i].id = i; for (int j = i; j <= n; j += i) { d[j].a += i; } } sort(d + 1, d + n + 1, cmp); } inline int lowbit(int x) { return x & (-x); } void add(int x, int v) { while (x <= N - 5) { c[x] += v; x += lowbit(x); } } int ask(int x) { int res = 0; while (x > 0) { res += c[x]; x -= lowbit(x); } return res; } int solve(int n, int m) { int res = 0; for (int l = 1, r = 1; l <= n; l = r + 1) { r = min(n / (n / l), m / (m / l)); res += (n / l) * (m / l) * (ask(r) - ask(l - 1)); } return res; } int main() { init(N - 5); scanf("%d", &T); for (int i = 1; i <= T; i++) { scanf("%d%d%d", &q[i].n, &q[i].m, &q[i].a); if (q[i].n > q[i].m) swap(q[i].n, q[i].m); q[i].id = i; } sort(q + 1, q + T + 1, cmp); for (int i = 1, j = 1; i <= T; i++) { while (j <= N - 5 && d[j].a <= q[i].a) { for (int k = d[j].id; k <= N - 5; k += d[j].id) { add(k, d[j].a * mu[k / d[j].id]); } j++; } res[q[i].id] = solve(q[i].n, q[i].m); } for (int i = 1; i <= T; i++) printf("%d\n", res[i] & (~(1 << 31))); return 0; }bzoj - 3529
5. Crash的数字表格
题目链接:bzoj - 2154
题意:有一张n*m的数表,其第i行第j列的数值为lcm(i,j),求数表内所有数的和
思路:假设n<m,$res=\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{gcd(i,j)}$
令$d=gcd(i,j)$,枚举d得$res=\sum_{d=1}^{n}\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{ij}{d} [gcd(i,j)=d]=\sum_{d=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor} ijd [gcd(i,j)=1]$
把d移到前面有$res=\sum_{d=1}^{n}[d\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor} ij [gcd(i,j)=1]]$
根据莫比乌斯得性质得$res=\sum_{d=1}^{n}[d\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor} ij \sum_{k|gcd(i,j)}\mu(k)]$
枚举k得$res=\sum_{d=1}^{n}[d\sum_{k=1}^{\left \lfloor \frac{n}{d} \right \rfloor} \sum_{i=1}^{\left \lfloor \frac{n}{dk} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{dk} \right \rfloor} ijk^{2}\mu(k)]$
移一下项得$res=\sum_{d=1}^{n}[d\sum_{k=1}^{\left \lfloor \frac{n}{d} \right \rfloor} [ k^{2}\mu(k) \sum_{i=1}^{\left \lfloor \frac{n}{dk} \right \rfloor} i \sum_{j=1}^{\left \lfloor \frac{m}{dk} \right \rfloor} j]]$
可以发现$\sum_{i=1}^{\left \lfloor \frac{n}{dk} \right \rfloor} i$和$\sum_{j=1}^{\left \lfloor \frac{m}{dk} \right \rfloor} j$都是等差数列求和,$\sum_{k=1}^{\left \lfloor \frac{n}{d} \right \rfloor} k^{2}\mu(k)$可以通过预处理前缀和来求,两次整数分块即可
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> using namespace std; const int N = 10000010; const int mod = 20101009; int isp[N], p[N], sum[N], mu[N]; int tot, n, m; void init(int n) { mu[1] = 1; for (int i = 2; i <= n; i++) { if (!isp[i]) { p[++tot] = i; mu[i] = -1; } for (int j = 1; j <= tot && p[j] <= n / i; j++) { isp[i * p[j]] = 1; if (0 == i % p[j]) { mu[i * p[j]] = 0; break; } mu[i * p[j]] = -mu[i]; } } for (int i = 1; i <= n; i++) sum[i] = (sum[i - 1] + 1ll * i * i % mod * (mu[i] + mod)) % mod; } int qs(int x, int y) { return (1ll * x * (x + 1) / 2 % mod) * (1ll * y * (y + 1) / 2 % mod) % mod; } int calc(int n, int m) { int res = 0; for (int l = 1, r = 1; l <= n; l = r + 1) { r = min(n / (n / l), m / (m / l)); res = (res + 1ll * (sum[r] - sum[l - 1] + mod) * qs(n / l, m / l) % mod) % mod; } return res; } int solve(int n, int m) { int res = 0; for (int l = 1, r = 1; l <= n; l = r + 1) { r = min(n / (n / l), m / (m / l)); res = (res + 1ll * (r - l + 1) * (l + r) / 2 % mod * calc(n / l, m / l) % mod) % mod; } return res; } int main() { init(N - 5); scanf("%d%d", &n, &m); if (n > m) swap(n, m); printf("%d\n", solve(n, m)); return 0; }bzoj - 2154
6. AT5200 [AGC038C] LCMs
题目链接:AtCoder - agc038_c
题意:给定一个长度为n得序列$A_{1},A_{2},...,A_{n}$,求$\sum_{i=1}^{n} \sum_{j=i+1}^{n} lcm(A_{i},A_{j})$
思路:令M=max($A_{i}$),$\sum_{i=1}^{n} \sum_{j=i+1}^{n} lcm(A_{i},A_{j})=\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} lcm(A_{i},A_{j})-\sum_{i=1}^{n}A_{i}}{2}$
考虑如何求$res=\sum_{i=1}^{n} \sum_{j=1}^{n} lcm(A_{i},A_{j})$
$\sum_{i=1}^{n} \sum_{j=1}^{n} lcm(A_{i},A_{j})=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{A_{i}A_{j}}{gcd(A_{i},A_{j})}$
令$d=gcd(A_{i},A_{j})$得$\sum_{i=1}^{n} \sum_{j=1}^{n} lcm(A_{i},A_{j})=\sum_{d=1}^{M} \frac{1}{d} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i}A_{j}[gcd(A_{i},A_{j})=d]=\sum_{d=1}^{M} \frac{1}{d} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i}A_{j}[gcd(\frac{A_{i}}{d},\frac{A_{j}}{d})=1][d|A_{i}][d|A_{j}]$
根据莫比乌斯反演的性质得$res=\sum_{d=1}^{M} \frac{1}{d} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i}A_{j} \sum_{k|gcd(\frac{A_{i}}{d},\frac{A_{j}}{d})} \mu(k) [d|A_{i}][d|A_{j}]$
将k提到前面得$res=\sum_{d=1}^{M} \frac{1}{d} \sum_{k=1}^{\left \lfloor \frac{M}{d} \right \rfloor} \mu(k) \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i}A_{j} [kd|A_{i}][kd|A_{j}]$
所以最后$res=\sum_{d=1}^{M} \frac{1}{d} \sum_{k=1}^{\left \lfloor \frac{M}{d} \right \rfloor} \mu(k) (\sum_{i=1}^{n}[kd|A_{i}]A_{i})^{2}$
设$f(t)=(\sum_{i=1}^{n}[t|A_{i}]A_{i})^{2}$,显然$f(t)$可以在$O(nlnn)$的时间内预处理出来,再通过枚举d和k暴力求解即可
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> using namespace std; typedef long long ll; const int N = 1000010; const ll mod = 998244353; int isp[N], p[N], mu[N], n, tot, a[N], imax; ll inv[N], f[N], c[N], sum; void init(int n) { mu[1] = 1; for (int i = 2; i <= n; i++) { if (!isp[i]) { p[++tot] = i; mu[i] = -1; } for (int j = 1; j <= tot && p[j] <= n / i; j++) { isp[i * p[j]] = 1; if (0 == i % p[j]) { mu[i * p[j]] = 0; break; } else mu[i * p[j]] = -mu[i]; } } inv[0] = inv[1] = 1; for (int i = 2; i <= n; i++) inv[i] = (mod - mod / i) * inv[mod % i] % mod; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%lld", &a[i]); imax = max(imax, a[i]); sum = (sum + a[i]) % mod; c[a[i]] += 1; } init(imax); for (int i = 1; i <= imax; i++) { for (int j = i; j <= imax; j += i) f[i] = (f[i] + c[j] * j) % mod; f[i] = (f[i] * f[i]) % mod; } ll res = 0; for (int d = 1; d <= imax; d++) { for (int k = 1, t = d; t <= imax; t += d, k++) { res = (res + inv[d] * mu[k] % mod * f[t] % mod) % mod; } } res = ((res - sum) % mod + mod) % mod * inv[2] % mod; printf("%lld\n", res); return 0; }AtCoder - agc038_c