我有一个处理过的验证码图像(放大)看起来像:
如您所见,“TEXT”的字体大小比Noisy Lines的宽度略大.
所以我需要一个算法或代码来从这个图像中删除嘈杂的线条.
在Python PIL库和下面提到的斩波算法的帮助下,我得不到OCR可以轻松读取的输出图像.
这是我尝试过的Python代码:
import PIL.Image
import sys
# python chop.py [chop-factor] [in-file] [out-file]
chop = int(sys.argv[1])
image = PIL.Image.open(sys.argv[2]).convert('1')
width, height = image.size
data = image.load()
# Iterate through the rows.
for y in range(height):
for x in range(width):
# Make sure we're on a dark pixel.
if data[x, y] > 128:
continue
# Keep a total of non-white contiguous pixels.
total = 0
# Check a sequence ranging from x to image.width.
for c in range(x, width):
# If the pixel is dark, add it to the total.
if data[c, y] < 128:
total += 1
# If the pixel is light, stop the sequence.
else:
break
# If the total is less than the chop, replace everything with white.
if total <= chop:
for c in range(total):
data[x + c, y] = 255
# Skip this sequence we just altered.
x += total
# Iterate through the columns.
for x in range(width):
for y in range(height):
# Make sure we're on a dark pixel.
if data[x, y] > 128:
continue
# Keep a total of non-white contiguous pixels.
total = 0
# Check a sequence ranging from y to image.height.
for c in range(y, height):
# If the pixel is dark, add it to the total.
if data[x, c] < 128:
total += 1
# If the pixel is light, stop the sequence.
else:
break
# If the total is less than the chop, replace everything with white.
if total <= chop:
for c in range(total):
data[x, y + c] = 255
# Skip this sequence we just altered.
y += total
image.save(sys.argv[3])
因此,基本上我想知道一个更好的算法/代码来摆脱噪音,从而能够使图像可以被OCR(Tesseract或pytesser)读取.
解决方法:
要快速摆脱大多数线条,您可以将两个或更少相邻黑色像素的所有黑色像素变为白色.这应该可以修复杂散线.然后,当你有很多“块”时,你可以删除较小的块.
这是假设样本图像已被放大,并且线仅为一个像素宽.