17082 两个有序数序列中找第k小

17082 两个有序数序列中找第k小

时间限制:1000MS  内存限制:65535K
提交次数:0 通过次数:0

题型: 编程题   语言: 无限制

Description

已知两个已经排好序(非减序)的序列X和Y,其中X的长度为m,Y长度为n,
现在请你用分治算法,找出X和Y的第k小的数,算法时间复杂度为O(max{logm, logn})。

此题请勿采用将序列X和Y合并找第k小的O(m+n)的一般方法,要充分利用X和Y已经排好序的这一特性。

输入格式

第一行有三个数,分别是长度m、长度n和k,中间空格相连(1<=m,n<=100000; 1<=k<=m+n)。
第二行m个数分别是非减序的序列X。第三行n个数分别是非减序的序列Y。

输出格式

序列X和Y的第k小的数。

输入样例

5 6 7
1 8 12 12 21 
4 12 20 22 26 31

输出样例

20

提示

假设:X序列为X[xBeg...xEnd],而Y序列为Y[yBeg...yEnd]。

将序列X和Y都均分2段,即取X序列中间位置为xMid (xMid = xBeg+(xEnd-xBeg)/2),也同理取序列Y中间位置为yMid。
比较X[xMid]和Y[yMid]的大小,此时记录X左段和Y左段元素个数合计为halfLen,即halfLen = xMid-xBeg+yMid-yBeg+2。

1. 当X[xMid] < Y[yMid]时,在合并的数组中,原X[xBeg...xMid]所有元素一定在Y[yMid]的左侧,
   (1) 若k < halfLen,则此时第k大的元素一定不会大于Y[yMid]这个元素,故以后没有必要搜索 Y[yMid...yEnd]这些元素,可弃Y后半段数据。
       此时只需递归的对X序列+Y序列的前半段,去搜索第k小的数。

   (2) 若k >= halfLen,则此时第k大的元素一定不会小于X[xMid]这个元素,故以后没有必要搜索 X[xBeg...xMid]这些元素,可弃X前半段数据。
       此时只需递归的对X序列的后半段+Y序列,去搜索第 k-(xMid-xBeg+1)小的数。

2. 当X[xMid] >= Y[yMid]时,在合并的数组中,原Y[yBeg...yMid]的所有元素一定在X[xMid]的左侧,
   (1) 若k < halfLen,则此时第k大的元素一定不会大于X[xMid]这个元素,故以后没有必要搜索 X[xMid...xEnd]这些元素,可弃X后半段数据。
       此时只需递归的对X序列的前半段+Y序列,去搜索第k小的数。

   (2) 若k >= halfLen,则此时第k大的元素一定不会小于Y[yMid]这个元素,故以后没有必要搜索 Y[yBeg...yMid]这些元素,可弃Y前半段数据。
       此时只需递归的对X序列+Y序列的后半段,去搜索第 k-(yMid-yBeg+1)小的数。
17082 两个有序数序列中找第k小


17082 两个有序数序列中找第k小

上一篇:sublime Text 使用


下一篇:C语言—控制小球移动(同贪吃蛇移动原理)