http://poj.org/problem?id=1426
Description
Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1. You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal digits.
Input
The input file may contain multiple test cases. Each line contains a value of n (1 <= n <= 200). A line containing a zero terminates the input.
Output
For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.
Sample Input
2
6
19
0
Sample Output
10
100100100100100100
111111111111111111
大致题意:
给出一个整数n,(1 <= n <= 200)。求出任意一个它的倍数m,要求m必须只由十进制的'0'或'1'组成。
没看见是Special Judge
题解:
我感觉这题能够是投机取巧,输出结果根本就没有100位,之前以为是大数,一直没敢做,谁知是一个超级大坑题。
还有给的测试数据给的那么大,害我一看测试数据就不敢做了。还有为什么我用STL中的queue用C++交超时,而用G++就A了
,而自己写的结构体用C++交就过了。
主要思想:
和二叉树差不多,1->10,11;10->100,101,11->110,111.....
就是q.push(t*10);q.push(t*10+1);
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
int n;
struct node
{
long long int x;
} q[];
struct node t,f;
void bfs()
{
int s=;
int e=;
t.x=;
q[e++]=t;
while(s<e)
{
t=q[s++];
if(t.x%n==)
{
printf("%lld\n",t.x);
break;
}
f.x=t.x*;
q[e++]=f;
f.x=t.x*+;
q[e++]=f;
}
}
int main()
{
while(scanf("%d",&n)!=EOF&&n!=)
{
bfs();
}
return ;
}
G++;
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <queue>
using namespace std;
int n;
long long t;
void bfs()
{
queue<long long >q;
q.push();
while(!q.empty())
{
t=q.front();
q.pop();
if(t%n==)
{
printf("%lld\n",t);
break;
}
q.push(t*);
q.push(t*+);
}
}
int main()
{
while(scanf("%d",&n)!=EOF&&n!=)
{
bfs();
}
return ;
}