利用Typora编辑器做“求极限”公式笔记
五、∞·0型
把 相 对 简 单 项 变 为 1 1 相 对 简 单 项 把相对简单项\large变为\frac{1}{\frac{1}{相对简单项}} 把相对简单项变为相对简单项11
例1) lim x → ∞ x ( cos 1 x − 1 ) lim x → ∞ ( cos 1 x − 1 ) 1 x = lim x → ∞ − 1 2 ( 1 x ) 2 1 x = lim x → ∞ − 1 2 x = − 1 2 ∞ = − 1 ∞ = 0 \begin{aligned} \textbf{例1)} \small&\lim_{x\to\infty}x(\cos\frac{1}{x}-1)\\ \small&\lim_{x\to\infty}\frac{(\cos\frac{1}{x}-1)}{\frac{1}{x}}\\ \small=&\lim_{x\to\infty}\frac{-\frac{1}{2}{(\frac{1}{x}})^2}{\frac{1}{x}}\\ \small=&\lim_{x\to\infty}-\frac{1}{2x}\\ \small=&-\frac{1}{2\infty}\\ \small=&-\frac{1}{\infty}\\ \small=&0 \end{aligned} 例1)=====x→∞limx(cosx1−1)x→∞limx1(cosx1−1)x→∞limx1−21(x1)2x→∞lim−2x1−2∞1−∞10
例2) 设 a 是 非 零 常 数 , 求 lim x → ∞ x ⋅ ln x + a x − a lim x → ∞ x ⋅ ln x + a x − a = lim x → ∞ ln x + a x − a 1 x = lim x → ∞ 2 a x x − a ( ∞ / ∞ 型 ) = lim x → ∞ 2 a x x = lim x → ∞ 2 a = 2 a \begin{aligned} \textbf{例2)} \small&设a是非零常数,求\lim_{x\to\infty}x·\ln{\frac{x+a}{x-a}}\\ \small&\lim_{x\to\infty}x·\ln{\frac{x+a}{x-a}}\\ \small=&\lim_{x\to\infty}\frac{\ln{\frac{x+a}{x-a}}}{\frac{1}{x}}\\ \small=&\lim_{x\to\infty}{\frac{2ax}{x-a}}(∞/∞型)\\ \small=&\lim_{x\to\infty}\frac{2ax}{x}\\ \small=&\lim_{x\to\infty}2a\\ \small=&2a \end{aligned} 例2)=====设a是非零常数,求x→∞limx⋅lnx−ax+ax→∞limx⋅lnx−ax+ax→∞limx1lnx−ax+ax→∞limx−a2ax(∞/∞型)x→∞limx2axx→∞lim2a2a
六、求底数指数都有x的极限
做 题 方 法 : 1 、 将 底 数 指 数 变 成 e 指 数 ⋅ ln 底 数 2 、 lim x → ? e 指 数 = e lim x → ? ⋅ 指 数 \begin{aligned} &\large做题方法:\\\\ &\large1、将底数^{指数}变成e^{指数·\ln{底数}}\\\\ &\large2、\lim_{x\to?}e^{指数}=e^{\lim_{x\to?}·指数} \end{aligned} 做题方法:1、将底数指数变成e指数⋅ln底数2、x→?lime指数=elimx→?⋅指数
例1) 试 求 lim x → 0 ( 1 + 3 x ) 2 sin x lim x → 0 ( 1 + 3 x ) 2 sin x = lim x → 0 e 2 ln ( 1 + 3 x ) sin x = e lim x → 0 2 ln ( 1 + 3 x ) sin x = e 6 lim x → 0 2 ln ( 1 + 3 x ) sin x = lim x → 0 2 ⋅ ( 3 x ) x ( 等 价 无 穷 小 ) = lim x → 0 6 = 6 \begin{aligned} \textbf{例1)} \large&试求\lim_{x\to0}(1+3x)^{\frac{2}{\sin{x}}}\\ \large&\lim_{x\to0}(1+3x)^{\frac{2}{\sin{x}}}\\ \large=&\lim_{x\to0}e^{\frac{2\ln{(1+3x)}}{\sin{x}}}\\ \large=&e^{\lim_{x\to0}\frac{2\ln{(1+3x)}}{\sin{x}}}\\\\ \large=&e^{6}\\\\ \small&\lim_{x\to0}\frac{2\ln{(1+3x)}}{\sin{x}}\\ \small=&\lim_{x\to0}\frac{2·(3x)}{x}(等价无穷小)\\ \small=&\lim_{x\to0}6\\ \small=&6 \end{aligned} 例1)======试求x→0lim(1+3x)sinx2x→0lim(1+3x)sinx2x→0limesinx2ln(1+3x)elimx→0sinx2ln(1+3x)e6x→0limsinx2ln(1+3x)x→0limx2⋅(3x)(等价无穷小)x→0lim66
例2) 试 求 lim x → 0 ( cos x ) 1 ln 1 + x 2 lim x → 0 ( cos x ) 1 ln 1 + x 2 = lim x → 0 e ln ( cos x ) ln ( 1 + x 2 ) = e lim x → 0 ln ( cos x ) ln ( 1 + x 2 ) = e − 1 2 lim x → 0 ln ( cos x ) ln ( 1 + x 2 ) = lim x → 0 cos x − 1 x 2 ( 等 价 无 穷 小 ) = lim x → 0 − 1 2 x 2 x 2 ( 等 价 无 穷 小 ) = lim x → 0 − 1 2 = − 1 2 \begin{aligned} \textbf{例2)} \large&试求\lim_{x\to0}(\cos{x})^{\frac{1}{\ln{1+x^2}}}\\ \large&\lim_{x\to0}(\cos{x})^{\frac{1}{\ln{1+x^2}}}\\ \large=&\lim_{x\to0}e^{\frac{\ln{(\cos{x})}}{\ln{(1+x^2)}}}\\ \large=&e^{\lim_{x\to0}{\frac{\ln{(\cos{x})}}{\ln{(1+x^2)}}}}\\\\ \large=&e^{-\frac{1}{2}}\\\\ \small&\lim_{x\to0}{\frac{\ln{(\cos{x})}}{\ln{(1+x^2)}}}\\ \small=&\lim_{x\to0}{\frac{\cos{x}-1}{x^2}}(等价无穷小)\\ \small=&\lim_{x\to0}{\frac{-\frac{1}{2}x^2}{x^2}}(等价无穷小)\\ \small=&\lim_{x\to0}-\frac{1}{2}\\ \small=&-\frac{1}{2} \end{aligned} 例2)=======试求x→0lim(cosx)ln1+x21x→0lim(cosx)ln1+x21x→0limeln(1+x2)ln(cosx)elimx→0ln(1+x2)ln(cosx)e−21x→0limln(1+x2)ln(cosx)x→0limx2cosx−1(等价无穷小)x→0limx2−21x2(等价无穷小)x→0lim−21−21
例3) 试 求 lim x → 0 + ( cos x ) π x lim x → 0 + ( cos x ) π x = lim x → 0 + e π ⋅ ln ( cos x ) x = e lim ( x → 0 + ) π ⋅ ln ( cos x ) x = e − π 2 lim x → 0 + π ⋅ ln ( cos x ) x = lim x → 0 + π ⋅ ( cos x − 1 ) x = lim x → 0 + − π ⋅ 1 2 ( x ) 2 x = lim x → 0 + − π 2 = − π 2 \begin{aligned} \textbf{例3)} \large&试求\lim_{x\to0^{+}}(\cos{\sqrt{x}})^{\frac{π}{x}}\\ \large&\lim_{x\to0^{+}}(\cos{\sqrt{x}})^{\frac{π}{x}}\\ \large=&\lim_{x\to0^{+}}e^{\frac{π·\ln{(\cos{\sqrt{x}}})}{x}}\\ \large=&e^{\lim_{(x\to0^{+})}{\frac{π·\ln{(\cos{\sqrt{x}}})}{x}}}\\\\ \large=&e^{-\frac{π}{2}}\\\\ \small&\lim_{x\to0^{+}}\frac{π·\ln{(\cos{\sqrt{x}}})}{x}\\ \small=&\lim_{x\to0^{+}}\frac{π·(\cos{\sqrt{x}}-1)}{x}\\ \small=&\lim_{x\to0^{+}}-\frac{π·\frac{1}{2}(\sqrt{x})^2}{x}\\ \small=&\lim_{x\to0^{+}}-\frac{π}{2}\\ \small=&-\frac{π}{2} \end{aligned} 例3)=======试求x→0+lim(cosx )xπx→0+lim(cosx )xπx→0+limexπ⋅ln(cosx )elim(x→0+)xπ⋅ln(cosx )e−2πx→0+limxπ⋅ln(cosx )x→0+limxπ⋅(cosx −1)x→0+lim−xπ⋅21(x )2x→0+lim−2π−2π
例4) 设 a 是 非 零 常 数 , 求 lim x → ∞ ( x + a x − a ) x lim x → ∞ ( x + a x − a ) x = lim x → ∞ e x ⋅ ln ( x + a x − a ) = e lim x → ∞ x ⋅ ln ( x + a x − a ) = e 2 a lim x → ∞ x ⋅ ln x + a x − a = lim x → ∞ ln x + a x − a 1 x = lim x → ∞ 2 a x x − a ( ∞ / ∞ 型 ) = lim x → ∞ 2 a x x = lim x → ∞ 2 a = 2 a ( 参 考 ∞ ⋅ 0 型 例 2 ) \begin{aligned} \textbf{例4)} \large&设a是非零常数,求\lim_{x\to\infty}{(\frac{x+a}{x-a})}^x\\ \large&\lim_{x\to\infty}{(\frac{x+a}{x-a})}^x\\ \large=&\lim_{x\to\infty}e^{x·\ln{(\frac{x+a}{x-a})}}\\ \large=&e^{\lim_{x\to\infty}x·\ln{(\frac{x+a}{x-a})}}\\\\ \large=&e^{2a}\\\\ \small&\lim_{x\to\infty}x·\ln{\frac{x+a}{x-a}}\\ \small=&\lim_{x\to\infty}\frac{\ln{\frac{x+a}{x-a}}}{\frac{1}{x}}\\ \small=&\lim_{x\to\infty}{\frac{2ax}{x-a}}(∞/∞型)\\ \small=&\lim_{x\to\infty}\frac{2ax}{x}\\ \small=&\lim_{x\to\infty}2a\\ \small=&2a\\ \small&(参考∞·0型例2) \end{aligned} 例4)========设a是非零常数,求x→∞lim(x−ax+a)xx→∞lim(x−ax+a)xx→∞limex⋅ln(x−ax+a)elimx→∞x⋅ln(x−ax+a)e2ax→∞limx⋅lnx−ax+ax→∞limx1lnx−ax+ax→∞limx−a2ax(∞/∞型)x→∞limx2axx→∞lim2a2a(参考∞⋅0型例2)
例5) 试 求 lim x → 0 x ( 1 − x ) x − 1 lim x → 0 x ( 1 − x ) x − 1 = lim x → 0 1 e ln ( 1 − x ) − 1 = lim x → 0 1 ln ( 1 − x ) ⋅ ln e ( 等 价 无 穷 小 ) = lim x → 0 1 ln ( 1 − x ) = 1 ln ( 1 − 0 ) ( 直 接 代 入 法 ) = 1 ln 1 = 1 0 = ∞ \begin{aligned} \textbf{例5)} \large&试求\lim_{x\to0}\frac{x}{(1-x)^{x}-1}\\ \large&\lim_{x\to0}\frac{x}{(1-x)^{x}-1}\\ \large=&\lim_{x\to0}\frac{1}{e^{\ln{(1-x)-1}}}\\ \large=&\lim_{x\to0}\frac{1}{\ln{(1-x)}·\ln{e}}(等价无穷小)\\ \large=&\lim_{x\to0}\frac{1}{\ln{(1-x)}}\\ \large=&\frac{1}{\ln{(1-0)}}(直接代入法)\\ \large=&\frac{1}{\ln{1}}\\ \large=&\frac{1}{0}\\ \large=&∞ \end{aligned} 例5)=======试求x→0lim(1−x)x−1xx→0lim(1−x)x−1xx→0limeln(1−x)−11x→0limln(1−x)⋅lne1(等价无穷小)x→0limln(1−x)1ln(1−0)1(直接代入法)ln1101∞
*以上两种方法做题过程中包含着极多分析,且需要与其他方法结合应用
Chan_Jade
2021.7.12