使用python爬取财经网站数据接口

网页network发现接口返回的是json数据,怎样通过python,通过分页方式爬取下载到excel里或者数据库里面

 

使用python爬取财经网站数据接口

 

使用python爬取财经网站数据接口

 

接口参数意义:
https://stock.xueqiu.com/v5/stock/chart/kline.json?symbol=SZ159915&begin=1589340438277&period=day&type=before&count=-142&indicator=kline,pe,pb,ps,pcf,market_capital,agt,ggt,balance

参数 意义
begin 起始日
period K线单位选择,日k,月k等
type 不知道什么意义
count 数据个数
indicator 其他指标参数
接口含义:从begin那天开始,向前记录count个交易日,并且得到indicator的指标。

图中一些变量的意义

变量 意义
timestamp 时间戳(以ms计)。
volume 成交量
open 开盘价
high 最高价
low 收盘价
close 收盘价
其他的一些参数自己可以对比K线查看。

在Preview页面可以更简单查看到:

使用python爬取财经网站数据接口

 

使用接口

写代码的时候需要用到Request Hearders项下面的Cookie和User-Agent项

使用python爬取财经网站数据接口

 

接下来可以写代码爬取了,代码直接贴上了,使用requests库。

import requests
import json
import pandas as pd
import time

number = 2000  # 需要获取的交易日的个数
begin = int(time.time() * 1000)
url = 'https://stock.xueqiu.com/v5/stock/chart/kline.json?symbol=SZ159915&begin=' + str(
    begin) + '&period=day&type=before&count=-' + str(number)

# Cookie参数根据每个人的设备来变动
headers = {'User-Agent': 'Mozilla/5.0',
           'Cookie': 'xq_a_token=48575b79f8efa6d34166cc7bdc5abb09fd83ce63; xqat=48575b79f8efa6d34166cc7bdc5abb09fd83ce63; xq_r_token=7dcc6339975b01fbc2c14240ce55a3a20bdb7873; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTU4OTY4MjczMCwiY3RtIjoxNTg4OTE5Njc4OTk4LCJjaWQiOiJkOWQwbjRBWnVwIn0.l6yOJc-qTWMNU8g6wXjew0X7TmWbi82cuGiYkVvWGnUoxYSGWIx3DtfIki0etjSbN8mG0r1Gwd_q-PGo6EHL4h-SreHzt7tnteLtmnFrJ5hdyNh1g_x2u4XMvTX-pIEZmVInhBIM_BGVFerYXHuIJ6lm1G-EPR4RlVG2PQ7PTvvsz9-VycQJVZuF1zguF936WiSbPTBmhG0wcXUdfziFC1RPrXgFNTrwNXqaIiWfT5WbRWckm8aFNM3krCGCaES494Jco0FBM3eB5GJlGeB5xS1if_de7T6__PSTCmzMHokG133gRqt4FvYHu9kIQg74CdGw8u7EDWSigw-kASVAzg; u=851588919733219; is_overseas=0; Hm_lvt_1db88642e346389874251b5a1eded6e3=1588919732; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1588919732; device_id=fa23c8c5b1bd5f49c8c9ac7a657ccec3'}

r = requests.get(url, headers=headers)  # 爬取数据
text = r.text  # 获得文本
data = json.loads(text)  # str转成json
item = data['data']['item']  # 从全部数据中取出item项
df = pd.DataFrame(item, columns=["timestamp", "volume", "open", "high", "low", "close", "chg", "percent", "turnoverrate", "amount", "volume_post", "amount_post"])  # list转为DataFrame数据格式,更方便以后的处理
print(df)

输出的数据如下:

          timestamp     volume   open  ...       amount  volume_post  amount_post
0     1329408000000   67987778  0.726  ...          NaN         None         None
1     1329667200000   39183956  0.725  ...          NaN         None         None
2     1329753600000   77306937  0.721  ...          NaN         None         None
3     1329840000000  193157652  0.738  ...          NaN         None         None
4     1329926400000  124234294  0.765  ...          NaN         None         None
...             ...        ...    ...  ...          ...          ...          ...
1995  1588089600000  356095691  1.943  ...  696005741.0         None         None
1996  1588176000000  411736129  1.964  ...  817442890.0         None         None
1997  1588694400000  367767579  1.980  ...  737917205.0         None         None
1998  1588780800000  265935124  2.030  ...  538456242.0         None         None
1999  1588867200000  304340396  2.035  ...  622569015.0         None         None

[2000 rows x 12 columns]

  至此,爬取工作完成,后面如何使用根据个人需求而定。

 

https://blog.csdn.net/qq_34769201/article/details/106072280?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-1.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-1.no_search_link

 

上一篇:TikZ教程:频率分布直方图 TikZ 模板


下一篇:SWUST OJ 1027: 舞伴问题