索引的目的在于提高查询效率
一 索引分类
1、普通索引 index
加速查询
2、唯一索引
2.1、主键索引 primary key
加速查询+约束(不为空且唯一)
2.2、唯一索引 unique
加速查询+约束(唯一)
3、联合索引
-- index(id,name) 联合普通索引
-- primary key(id,name) 联合主键索引
-- unique(id,name) 联合唯一索引
4、全文索引 fulltext
用于搜索很长文章的时候效果最好。
5、空间索引 spatial
二 索引类型
# 我们可以在创建索引的时候,为其指定索引类型,分两类
1、hash类型
查询单条快,范围查询慢
2、btree类型 B+树
b+树,层级越多,数据量指数级增长
#不同的存储引擎支持的索引类型也不一样
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
三 创建\删除索引的语法
1、创建索引
# 在创建表时就添加索引 及 注意事项
create table TABLE_NAME(
id int, # 可以添加primary key
# id int index, # 不可以这么添加索引,因为index是普通索引,没有约束一说,所以不能像主键索引和唯一索引那样在定义字段的时候加索引
name char(20),
age int,
email varchar(30)
# primary key(id) # 也可以为主键这样添加索引
# index(id) # 虽然不能在定义字段的同时添加普通索引,但是通过这种方式为字段添加普通索引
);
# 在创建表之后添加索引
create index name on TABLE_NAME(name); # 添加普通索引
create unique age on TABLE_NAME(age); # 添加唯一索引
alter table TABLE_NAME add primary key(id); # 添加主键索引,也就是给id字段增减一个主键约束
create index name on TABLE_NAME(id,name); # 添加普通联合索引
2、删除索引
drop index name on TABLE_NAME; # 删除普通索引
drop index age on TABLE_NAME; # 删除唯一索引,就和普通索引一样,不用在index前加unique就可以删除
alter table TABLE_NAME drop promary key; # 删除主键(因为它添加的时候是按照alter来增加的,那么我们也用alter来删)
四 测试索引
1、准备表
create table TABLE_NAME(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);
2、创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
declare i int default 1;
while(i<3000000)do
insert into s1 values(i,concat('egon',i),'male',concat('egon',i,'@oldboy'));
set i=i+1;
end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号
3、查看存储过程
show create procedure auto_insert1\G
4、调用存储过程
call auto_insert1();
五 正确使用索引
1、覆盖索引
#分析
select * from TABLE_NAME where id=123;
该sql命中了索引,但未覆盖索引。
利用id=123到索引的数据结构中定位到该id在硬盘中的位置,或者说再数据表中的位置。
但是我们select的字段为*,除了id以外还需要其他字段,这就意味着,我们通过索引结构取到id还不够,
还需要利用该id再去找到该id所在行的其他字段值,这是需要时间的,很明显,如果我们只select id,
就减去了这份苦恼,如下
select id from TABLE_NAME where id=123;
这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了id在硬盘的地址,速度很快
2、联合索引
create index ne on s1(name,email);#组合索引
3、索引合并
#索引合并:把多个单列索引合并使用
#分析:
组合索引能做到的事情,我们都可以用索引合并去解决,比如
create index ne on s1(name,email);#组合索引
我们完全可以单独为name和email创建索引
组合索引可以命中:
select * from s1 where name='egon' ;
select * from s1 where name='egon' and email='adf';
索引合并可以命中:
select * from s1 where name='egon' ;
select * from s1 where email='adf';
select * from s1 where name='egon' and email='adf';
乍一看好像索引合并更好了:可以命中更多的情况,但其实要分情况去看,如果是name='egon' and email='adf',
那么组合索引的效率要高于索引合并,如果是单条件查,那么还是用索引合并比较合理
4、添加索引遵循原则
#1、最左前缀匹配原则,非常重要的原则,
create index ix_name_email on s1(name,email,)
- 最左前缀匹配:必须按照从左到右的顺序匹配
select * from s1 where name='egon'; #可以
select * from s1 where name='egon' and email='asdf'; #可以
select * from s1 where email='alex@oldboy.com'; #不可以
mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,
比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,
d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
#2、=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
#3、尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),
表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,
这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录
#4、索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’
就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);
最左前缀示范
select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male'; create index idx on s1(id,name,email,gender); #未遵循最左前缀 select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male'; drop index idx on s1; create index idx on s1(name,email,gender,id); #遵循最左前缀 select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
1 最左前缀匹配 2 index(id,age,email,name); 3 #条件中一定要出现id(只要出现id就会提升速度) 4 id 5 id age 6 id email 7 id name 8 9 email #不行 如果单独这个开头就不能提升速度了 10 mysql> select count(*) from s1 where id=3000; 11 +----------+ 12 | count(*) | 13 +----------+ 14 | 1 | 15 +----------+ 16 1 row in set (0.11 sec) 17 18 mysql> create index xxx on s1(id,name,age,email); 19 Query OK, 0 rows affected (6.44 sec) 20 Records: 0 Duplicates: 0 Warnings: 0 21 22 mysql> select count(*) from s1 where id=3000; 23 +----------+ 24 | count(*) | 25 +----------+ 26 | 1 | 27 +----------+ 28 1 row in set (0.00 sec) 29 30 mysql> select count(*) from s1 where name='egon'; 31 +----------+ 32 | count(*) | 33 +----------+ 34 | 299999 | 35 +----------+ 36 1 row in set (0.16 sec) 37 38 mysql> select count(*) from s1 where email='egon3333@oldboy.com'; 39 +----------+ 40 | count(*) | 41 +----------+ 42 | 1 | 43 +----------+ 44 1 row in set (0.15 sec) 45 46 mysql> select count(*) from s1 where id=1000 and email='egon3333@oldboy.com'; 47 +----------+ 48 | count(*) | 49 +----------+ 50 | 0 | 51 +----------+ 52 1 row in set (0.00 sec) 53 54 mysql> select count(*) from s1 where email='egon3333@oldboy.com' and id=3000; 55 +----------+ 56 | count(*) | 57 +----------+ 58 | 0 | 59 +----------+ 60 1 row in set (0.00 sec) 建联合索引,最左匹配
索引无法命中的情况需要注意:
- like '%xx' select * from tb1 where email like '%cn'; - 使用函数 select * from tb1 where reverse(email) = 'wupeiqi'; - or select * from tb1 where nid = 1 or name = 'seven@live.com'; 特别的:当or条件中有未建立索引的列才失效,以下会走索引 select * from tb1 where nid = 1 or name = 'seven'; select * from tb1 where nid = 1 or name = 'seven@live.com' and email = 'alex' - 类型不一致 如果列是字符串类型,传入条件是必须用引号引起来,不然... select * from tb1 where email = 999; 普通索引的不等于不会走索引 - != select * from tb1 where email != 'alex' 特别的:如果是主键,则还是会走索引 select * from tb1 where nid != 123 - > select * from tb1 where email > 'alex' 特别的:如果是主键或索引是整数类型,则还是会走索引 select * from tb1 where nid > 123 select * from tb1 where num > 123 #排序条件为索引,则select字段必须也是索引字段,否则无法命中 - order by select name from s1 order by email desc; 当根据索引排序时候,select查询的字段如果不是索引,则不走索引 select email from s1 order by email desc; 特别的:如果对主键排序,则还是走索引: select * from tb1 order by nid desc; - 组合索引最左前缀 如果组合索引为:(name,email) name and email -- 使用索引 name -- 使用索引 email -- 不使用索引 - count(1)或count(列)代替count(*)在mysql中没有差别了 - create index xxxx on tb(title(19)) #text类型,必须制定长度
- 避免使用select * - count(1)或count(列) 代替 count(*) - 创建表时尽量时 char 代替 varchar - 表的字段顺序固定长度的字段优先 - 组合索引代替多个单列索引(经常使用多个条件查询时) - 尽量使用短索引 - 使用连接(JOIN)来代替子查询(Sub-Queries) - 连表时注意条件类型需一致 - 索引散列值(重复少)不适合建索引,例:性别不适合
六 慢查询优化的基本步骤
0、先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1、where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
2、explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3、order by limit 形式的sql语句让排序的表优先查
4、了解业务方使用场景
5、加索引时参照建索引的几大原则
6、观察结果,不符合预期继续从0分析