Given a positive integer N
, how many ways can we write it as a sum of consecutive positive integers?
Example 1:
Input: 5 Output: 2 Explanation: 5 = 5 = 2 + 3
Example 2:
Input: 9 Output: 3 Explanation: 9 = 9 = 4 + 5 = 2 + 3 + 4
Example 3:
Input: 15 Output: 4 Explanation: 15 = 15 = 8 + 7 = 4 + 5 + 6 = 1 + 2 + 3 + 4 + 5
Note: 1 <= N <= 10 ^ 9
.
解题思路:
这其实就是一道公差为1的等差数列题 ;
=> a1 * n + n * (n - 1) / 2 == N ;
=> a1 == N / n - (n - 1) / 2 ;
因为a1 >= 1 , 所以 N / n >= (n - 1) / 2 ; => n <= sqrt(2 * N) ;
且因为 a1 为整数 , 当n % 2 == 1 && N % n == 0 || n % 2 == 0 && N % n == n / 2 时 a1才为整数 ;
class Solution {
public:
int consecutiveNumbersSum(int N)
{
int res = 0 , n = 1 , a1 = 0 ;
while(n <= sqrt(2 * N))
{
if(n % 2 == 1 && N % n == 0 )
{
a1 = N / n - (n - 1) / 2 ;
if(a1 < 1 || a1 > N ) break ;
res++ ;
}
else if(n % 2 == 0 && N % n == n / 2)
{
a1 = (N - n / 2) / n - (n - 1) / 2 ;
if(a1 < 1 || a1 > N ) break ;
res++ ;
}
n++ ;
}
return res ;
}
};