[抄题]:
Given a string S
of digits, such as S = "123456579"
, we can split it into a Fibonacci-like sequence [123, 456, 579].
Formally, a Fibonacci-like sequence is a list F
of non-negative integers such that:
-
0 <= F[i] <= 2^31 - 1
, (that is, each integer fits a 32-bit signed integer type); -
F.length >= 3
; - and
F[i] + F[i+1] = F[i+2]
for all0 <= i < F.length - 2
.
Also, note that when splitting the string into pieces, each piece must not have extra leading zeroes, except if the piece is the number 0 itself.
Return any Fibonacci-like sequence split from S
, or return []
if it cannot be done.
Example 1:
Input: "123456579"
Output: [123,456,579]
Example 2:
Input: "11235813"
Output: [1,1,2,3,5,8,13]
Example 3:
Input: "112358130"
Output: []
Explanation: The task is impossible.
Example 4:
Input: "0123"
Output: []
Explanation: Leading zeroes are not allowed, so "01", "2", "3" is not valid.
Example 5:
Input: "1101111"
Output: [110, 1, 111]
Explanation: The output [11, 0, 11, 11] would also be accepted.
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
不知道为什么要用dfs:其实通过dfs返回true/false也是可以的
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
忘了backtracing怎么写了:只有满足num = 倒数一二位求和时才进行下一步的backtracing
[二刷]:
num > 倒数一二位求和时退出,小于时还可以继续backtracing
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
不知道为什么要用dfs:其实通过dfs返回true/false也是可以的
[复杂度]:Time complexity: O(n) Space complexity: O(n)
[算法思想:迭代/递归/分治/贪心]:
[关键模板化代码]:
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
[潜台词] :
class Solution {
public List<Integer> splitIntoFibonacci(String S) {
//initialization
List<Integer> ans = new ArrayList<Integer>();
//go dfs
dfs(S, 0, ans);
return ans;
} public boolean dfs(String s, int index, List<Integer> ans) {
//exit case
if (index == s.length() && ans.size() >= 3) return true; //dfs in for loop
for (int i = index; i < s.length(); i++) {
//corner case: start from 0
if (s.charAt(index) == '0' && i > index) break; long number = Long.parseLong(s.substring(index, i + 1));
//corner case: number exceeds limit
if (number > Integer.MAX_VALUE) break; //length > 2 then break
int size = ans.size();
if (ans.size() >= 2 && number > ans.get(size - 2) + ans.get(size - 1)) break; //length < 1 or true, go backtracing
if (ans.size() <= 1 || number == ans.get(size - 2) + ans.get(size - 1)) {
ans.add((int)number); if (dfs(s, i + 1, ans))
return true; ans.remove(ans.size() - 1);
}
}
return false;
}
}