1.概述
本课程的视频教程地址:《用户行为分析之编码实践》
本课程以用户行为分析案例为基础,带着大家去完成对各个KPI的编码工作,以及应用调度工作,让大家通过本课程掌握Hadoop项目的编码、调度流程。下面我们来看看本课程有哪些课时,如下图所示:
首先,我们来学习第一课时:《Hadoop项目基础代码》。
2.内容
2.1 Hadoop项目基础代码
本课时介绍编写Hadoop基础代码及脚本,在前面搭建好的Hadoop项目工程上, 完成项目的基本代码的编写,以及一些注意事项,为编写核心代码做准备,让大家掌握Hadoop项目的基础代码开发。
本课时主要包含以下知识点,如下图所示:
下面,我为大家介绍Hadoop项目工程的基本信息配置,由于本课程属于编码实践,所以设计到编码的相关流程。 所以大家在学习的时候,请事先将集群启动,IDE打开。下面我给大家演示如下内容,他们分别是:
- 项目工程的相关配置信息(pom文件的依赖配置,log日志信息的配置)
- 集群信息的相关配置(连接集群节点路径信息)
基础代码实现包含的内容,如下图所示:
具体演示细节,大家可以观看视频,这里我就不多做赘述了。《观看地址》
2.2 Hadoop项目核心地址实现
本课时介绍如何去实现Hadoop的核心代码模块, 在基础代码模块上,完成核心代码的实现,让大家掌握项目相关指标的统计开发。
下面我们来看看本课时有那些知识点,如下图所示:
下面我们来看看离线结果统计的处理方式有哪些,这里,我用一个图来说明,在离线统计中的统计方式,如下图所示:
这里,从图中我们可以看出,我们可以使用编写Hive脚本或Hive应用程序来统计, 也可以编写MapReduce程序来完成统计,也可以组合使用,这里,本课程的案例, 我使用的是组合使用,用Hive和MapReduce组合来完成。
接着来看核心代码实现的内容,如下图所示:
脚本如下所示:
#创建分区
CREATE EXTERNAL TABLE ubas(ip string, timespan string, url string,hour string)PARTITIONED BY (logdate string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' LOCATION '/home/hdfs/ubas/out/meta'
统计的KPI脚本,如下所示:
# clean hdfs data and output
/home/hadoop/hadoop-2.6.0/bin/hadoop jar ubas-1.0.0-jar-with-dependencies.jar $1
# use hive to stats
## 1.location data to partition
/home/hadoop/hive-0.14.0-bin/bin/hive -e "ALTER TABLE ubas ADD PARTITION(logdate='$1') LOCATION '/home/hdfs/ubas/out/meta/$1';"
## 2.stats pv
/home/hadoop/hive-0.14.0-bin/bin/hive -e "CREATE TABLE pv_$1 AS SELECT COUNT(1) AS PV FROM ubas WHERE logdate='$1';"
## 3.stats ip
/home/hadoop/hive-0.14.0-bin/bin/hive -e "CREATE TABLE ip_$1 AS SELECT COUNT(DISTINCT ip) AS IP FROM ubas WHERE logdate='$1';"
## 4.stats amount hour
/home/hadoop/hive-0.14.0-bin/bin/hive -e "CREATE TABLE amount_$1 ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' AS SELECT '$1',hour AS HOUR_TAG, COUNT(hour) AS HOUR,'' AS UPDATE_DATE FROM ubas WHERE logdate='$1' GROUP BY hour;"
## 5.stats jr
/home/hadoop/hive-0.14.0-bin/bin/hive -e "CREATE TABLE jr_$1 AS SELECT COUNT(1) AS JR FROM (SELECT COUNT(ip) AS times FROM ubas WHERE logdate='$1' GROUP BY ip HAVING times=1) e;"
## 6.combine pv,ip,jr and tr to ubas table
/home/hadoop/hive-0.14.0-bin/bin/hive -e "CREATE TABLE ubas_$1 ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' AS SELECT '$1', a.pv, b.ip, c.jr, ROUND(COALESCE(CAST(b.ip AS DOUBLE), 0)/a.pv, 2),'' AS UPDATE_DATE FROM pv_$1 a JOIN ip_$1 b ON 1=1 JOIN jr_$1 c ON 1=1 ;"
# sqoop data to mysql
## 1.sqoop t_kpi_day
/home/hadoop/sqoop-1.4.5/bin/sqoop export -D sqoop.export.records.per.statement=100 --connect jdbc:mysql://10.211.55.26:3306/hadoop_ubas --username root --password root --table t_kpi_day --fields-terminated-by ',' --export-dir "/home/hive/warehouse/ubas_$1" --batch --update-key createdate --update-mode allowinsert;
## 2.sqoop t_kpi_hour
/home/hadoop/sqoop-1.4.5/bin/sqoop export -D sqoop.export.records.per.statement=100 --connect jdbc:mysql://10.211.55.26:3306/hadoop_ubas --username root --password root --table t_kpi_hour --fields-terminated-by ',' --export-dir "/home/hive/warehouse/amount_$1" --batch --update-key createdate,kpi_code --update-mode allowinsert;
# drop tmp table to hive warehouse
/home/hadoop/hive-0.14.0-bin/bin/hive -e "drop table amount_$1;drop table ip_$1;drop table jr_$1;drop table pv_$1;drop table ubas_$1;"
2.3 统计结果处理
本课时介绍将统计好的数据导出到关系型数据库,以及对外提供数据共享接口,让大家掌握导出数据的流程及共享接口程序的编写。
本课时主要有一下知识点,如下图所示:
下面我们来看看使用 Sqoop 如何将 HDFS 上的统计结果导出到 MySQL 数据库, 接下来,我们来看看 Sqoop 的导出流程,如下图所示:
首先,我们是将统计结果存放在 HDFS 集群上,然后我们使用 Sqoop 工具去将 HDFS 的数据导出到关系型数据库,如 MySQL 整个基本流程就是这样。下面我们来使用 Sqoop 工具对HDFS 上的数据进行导出,同样,在使用导出功能时,这样大家需要 安装 Sqoop 工具,Sqoop 的安装较为简单,大家可以下去补充学习下,这里就不多做赘述了。
接下来,我们来看看数据共享流程,如下图所示:
从图中我们可以看出,我们将统计后的结果存放在mysql数据库中,这时我们需要编写一个rpc将数据共享出去,这里我采用的共享方式是, 编写一个thrift的服务接口,将数据通过这个接口共享出去,然后,前端同学获取数据后,可以将数据结果以图表的方式进行展示。
Thrift接口代码,如下所示:
- Thrift接口文件
namespace java cn.jikexueyuan.ubas.service
service UBASService {
map<string, double> queryDayKPI(1:string beginDate,2:string endDate),
map<double, double> queryHourKPI(1:string beginDate,2:string endDate)
}
- Server模块代码
package cn.jikexueyuan.ubas.main;
import org.apache.thrift.TProcessorFactory;
import org.apache.thrift.protocol.TCompactProtocol;
import org.apache.thrift.server.THsHaServer;
import org.apache.thrift.server.TServer;
import org.apache.thrift.transport.TFramedTransport;
import org.apache.thrift.transport.TNonblockingServerSocket;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import cn.jikexueyuan.ubas.service.UBASService;
import cn.jikexueyuan.ubas.service.impl.UBASServiceImpl;
/**
* @Date Mar 23, 2015
*
* @Author dengjie
*/
public class StatsServer {
private static Logger logger = LoggerFactory.getLogger(StatsServer.class);
private final int PORT = 9090;
@SuppressWarnings({ "rawtypes", "unchecked" })
private void start() {
try {
TNonblockingServerSocket socket = new TNonblockingServerSocket(PORT);
final UBASService.Processor processor = new UBASService.Processor(new UBASServiceImpl());
THsHaServer.Args arg = new THsHaServer.Args(socket);
/*
* Binary coded format efficient, intensive data transmission, The
* use of non blocking mode of transmission, according to the size
* of the block, similar to the Java of NIO
*/
arg.protocolFactory(new TCompactProtocol.Factory());
arg.transportFactory(new TFramedTransport.Factory());
arg.processorFactory(new TProcessorFactory(processor));
TServer server = new THsHaServer(arg);
server.serve();
} catch (Exception ex) {
ex.printStackTrace();
}
}
public static void main(String[] args) {
try {
logger.info("start thrift server...");
StatsServer stats = new StatsServer();
stats.start();
} catch (Exception ex) {
ex.printStackTrace();
logger.error(String.format("run thrift server has error,msg is %s", ex.getMessage()));
}
}
}
2.4 应用调度
本课时介绍将开发的Hadoop应用打包部署到服务器,配置并完成应用调度, 让大家掌握Hadoop项目的打包和部署及调度流程。
本课时主要包含一下知识点,如下图所示:
下面,我们来看看项目打包插件的使用,首先打包的内容,下面我们来看一张图,如下图所示:
关于使用Crontab进行定时调度,详情大家可以观看视频教程,这里我就不多做赘述了。《观看地址》
本课程我们对项目的指标进行了编码实践,并指导大家去编码实现相应的模块功能,以及帮助大家去调度我们开发的应用等知识,应该掌握一下知识,如下图所示:
3.总结
我们在有了这些知识作为基础,会使得我们在今后的工作中,开发类似的Hadoop项目变得游刃有余,更加的得心应手。
4.结束语
这就是本课程的主要内容,主要就对Hadoop项目做相应的编码实践,完成各个KPI的开发模块。
如果本教程能帮助到您,希望您能点击进去观看一下,谢谢您的支持!