hdu3415 Max Sum of Max-K-sub-sequence

 
 Max Sum of Max-K-sub-sequence

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Submit   Status

Description

Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
 

Input

The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
 

Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
 

Output

For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
 

Sample Input

4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
 

Sample Output

7 1 3
7 1 3
7 6 2
-1 1 1
优先队列
,在1-n加一个n-1就可以把环转化成一条线,用sum求合,那么从i到j的和就可以用sum[j]-sum[i],这个技巧也可以优化求和!然后把sum[i]用优先队列,j从0到n+m;这样一个一个求和,就可以了!
#include <iostream>
#include<stdio.h>
using namespace std;
int num[250000],sum[250000],prim[250000];
int main()
{
int n,m,t,i,front,rear;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
sum[0]=0;
for(i=1;i<=n;i++)
{
scanf("%d",&num[i]);
sum[i]=sum[i-1]+num[i];//用合来简化运算
}
for(;i<=2*n;i++)
{
sum[i]=sum[i-1]+num[i-n];//大于N的部分i-n对应的相应的NUM }
front=0;
rear=0;
int maxx=-1e10,sx=0,ex=0;
for(i=1;i<=n+m;i++)
{
while(front<rear&&sum[prim[rear-1]]>sum[i-1])//插入
{
rear--;
} prim[rear++]=i-1;
while(front<rear&&i-prim[front]>m)//去掉过界的
{
front++;
}
if(maxx<sum[i]-sum[prim[front]])//保存最大值,和相应的坐标
{
sx=prim[front]+1;
ex=i;
maxx=sum[i]-sum[prim[front]];
} }
if(sx>n)sx-=n;//注意大于n的其实是构造的模型,再重新
if(ex>n)ex-=n;
printf("%d %d %d\n",maxx,sx,ex); }
return 0;
}

上一篇:EHcache缓存框架详解


下一篇:MTK 隐藏底部状态栏