#!/usr/bin/env python # -*- coding: utf-8 -*- # learn <<Problem Solving with Algorithms and Data Structures>> # Release 3.0 # chengang882 @ 2016-12-20 # 它可以将常见的中缀表达式转换成后缀表达式,并计算这个表达示的值 # Completed implementation of a stack ADT #数据结构 class Stack(object): def __init__(self): self.items = [] def is_empty(self): return self.items == [] def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): return self.items[len(self.items)-1] def size(self): return len(self.items) # 实现中缀表达式转换为后缀表达式 def infix_to_postfix(infix_expr): prec = {} prec["*"] = 3 prec["/"] = 3 prec["+"] = 2 prec["-"] = 2 prec["("] = 1 op_stack = Stack() postfix_list = [] # 一定要有空格切割,显得不完美 token_list = infix_expr.split() for token in token_list: if token in "ABCDEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789": postfix_list.append(token) elif token == "(": op_stack.push(token) elif token == ")": top_token = op_stack.pop() while top_token != "(": postfix_list.append(top_token) top_token = op_stack.pop() else: while (not op_stack.is_empty()) and \ (prec[op_stack.peek()] >= prec[token]): postfix_list.append(op_stack.pop()) op_stack.push(token) while not op_stack.is_empty(): postfix_list.append(op_stack.pop()) print(" ".join(postfix_list)) return " ".join(postfix_list) # 计算后缀表达式的值 def postfix_eval(postfix_expr): operand_stack = Stack() token_list = postfix_expr.split() for token in token_list: if token in "0123456789": operand_stack.push(int(token)) else: operand2 = operand_stack.pop() operand1 = operand_stack.pop() # 还是将后缀换成中缀再计算 result = do_math(token, operand1, operand2) operand_stack.push(result) return operand_stack.pop() def do_math(op, op1, op2): if op == "*": return op1 * op2 elif op == "/": return op1 / op2 elif op == "+": return op1 + op2 elif op == "-": return op1 - op2 else: raise("ERROR") if __name__ == "__main__": print(postfix_eval(infix_to_postfix("5 * 8 + 2 * 3"))) infix_to_postfix("( A + B ) * C - ( D - E ) * ( F + G )") print(postfix_eval('7 8 + 3 2 + /'))
输出:
>>> 5 8 * 2 3 * + 46 A B + C * D E - F G + * - 3 >>>