【deep learning学习笔记】注释yusugomori的DA代码 --- dA.cpp -- 模型测试

测试代码。能看到,训练的时候是单个样本、单个样本的训练的,在NN中是属于“stochastic gradient descent”,否则,一批样本在一起的,就是“standard gradient descent”。

void test_dA()
{
srand(0); double learning_rate = 0.1;
double corruption_level = 0.3;
int training_epochs = 100; int train_N = 10;
int test_N = 2;
int n_visible = 20;
int n_hidden = 5; // training data
int train_X[10][20] = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0}
}; // construct dA
dA da(train_N, n_visible, n_hidden, NULL, NULL, NULL); // train
for(int epoch=0; epoch<training_epochs; epoch++)
{
// train it sample by sample
for(int i=0; i<train_N; i++)
{
da.train(train_X[i], learning_rate, corruption_level);
}
} // test data
int test_X[2][20] =
{
{1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0}
};
double reconstructed_X[2][20]; // test
for(int i=0; i<test_N; i++)
{
da.reconstruct(test_X[i], reconstructed_X[i]);
for(int j=0; j<n_visible; j++)
{
printf("%.5f ", reconstructed_X[i][j]);
}
cout << endl;
}
cout << endl;
} int main()
{
test_dA(); getchar();
return 0;
}

程序运行结果:

【deep learning学习笔记】注释yusugomori的DA代码 --- dA.cpp -- 模型测试

上一篇:前端:微信支付和支付宝支付在pc端和h5页面中的应用


下一篇:requestAnimationFrame Web中写动画的另一种选择