Lambda 表达式的示例

本文中的过程演示如何使用 lambda 表达式。 有关 lambda 表达式的概述,请参见 C++ 中的 Lambda 表达式 有关 lambda 表达式结构的更多信息,请参见 Lambda 表达式语法

由于类型化 lambda 表达式,您可以分配给 auto 变量或到 函数 对象,如下所示:

// declaring_lambda_expressions1.cpp
// compile with: /EHsc /W4
#include <functional>
#include <iostream>

int main()
{

    using namespace std;

    // Assign the lambda expression that adds two numbers to an auto variable.
    auto f1 = [](int x, int y) { return x + y; };

    cout << f1(2, 3) << endl;

    // Assign the same lambda expression to a function object.
    function<int(int, int)> f2 = [](int x, int y) { return x + y; };

    cout << f2(3, 4) << endl;
}

输出:

5
7

备注

有关更多信息,请参见auto 关键字(类型推导)function 类函数调用 (C++)

尽管 lambda 表达式多在方法或函数体中声明,但是也可以在初始化变量的任何地方声明。

示例 2

Visual C++ 编译器将一个 lambda 表达式绑定到其捕获的变量上(在声明该表达式而不是调用该表达式时)。 以下示例显示 lambda 表达式,通过值捕获本地变量的 i,并通过引用捕获本地变量的 j 因为 lambda 表达式通过值捕获 i ,因此 在该程序后面内容中的 i 的重新分配不影响该表达式的结果。 但是,因为 lambda 表达式用引用捕获 jj 的重新分配确实影响该表达式的结果。

// declaring_lambda_expressions2.cpp
// compile with: /EHsc /W4
#include <functional>
#include <iostream>

int main()
{
   using namespace std;

   int i = 3;
   int j = 5;

   // The following lambda expression captures i by value and
   // j by reference.
   function<int (void)> f = [i, &j] { return i + j; };

   // Change the values of i and j.
   i = 22;
   j = 44;

   // Call f and print its result.
   cout << f() << endl;
}

输出:

47

调用 Lambda 表达式

 如下面的代码段所示,可立即调用 Lambda 表达式。 第二个代码段说明如何将 lambda 作为参数传给标准模板库 (STL) (STL) 算法 (如 find_if

示例 1

此示例声明返回两个整数的总和并立即调用表达式。5 和 4参数的 lambda 表达式:

// calling_lambda_expressions1.cpp
// compile with: /EHsc
#include <iostream>

int main()
{
   using namespace std;
   int n = [] (int x, int y) { return x + y; }(5, 4);
   cout << n << endl;
}

输出:

9

示例 2

此示例将 lambda 表达式作为参数传递给 find_if 函数。 如果其参数是偶数,则 lambda 表达式返回 true

代码

// calling_lambda_expressions2.cpp
// compile with: /EHsc /W4
#include <list>
#include <algorithm>
#include <iostream>

int main()
{
    using namespace std;

    // Create a list of integers with a few initial elements.
    list<int> numbers;
    numbers.push_back(13);
    numbers.push_back(17);
    numbers.push_back(42);
    numbers.push_back(46);
    numbers.push_back(99);

    // Use the find_if function and a lambda expression to find the 
    // first even number in the list.
    const list<int>::const_iterator result = 
        find_if(numbers.begin(), numbers.end(),[](int n) { return (n % 2) == 0; });

    // Print the result.
    if (result != numbers.end()) {
        cout << "The first even number in the list is " << *result << "." << endl;
    } else {
        cout << "The list contains no even numbers." << endl;
    }
}

输出:

The first even number in the list is 42.

备注

有关 find_if 函数的详细信息,请参阅 find_if。 有关执行常规算法 STL 的函数的更多信息,请参见 <algorithm>

如下例所示,可以嵌套在另一个中的 lambda 表达式。 内部 lambda 表达式将其参数与 2 相乘并返回结果。 外部 lambda 表达式调用其参数的内部 lambda 表达式并将 3 添加到结果。

代码

// nesting_lambda_expressions.cpp
// compile with: /EHsc /W4
#include <iostream>

int main()
{
    using namespace std;

    // The following lambda expression contains a nested lambda
    // expression.
    int timestwoplusthree = [](int x) { return [](int y) { return y * 2; }(x) + 3; }(5);

    // Print the result.
    cout << timestwoplusthree << endl;
}

输出:

13

备注

在此示例中, [](int y) { return y * 2; } 是嵌套 lambda 表达式。

 

许多编程语言支持一个高阶函数的概念。一个高阶函数是包含其他 lambda 表达式作为参数或返回 lambda 表达式的 lambda 表达式。 可以使用 函数 类使 C.C++ Lambda 表达式的行为像高阶函数。 下面的示例演示返回 function 对象和 lambda 表达式采用 function 对象作为其参数的 Lambda 表达式。

// higher_order_lambda_expression.cpp
// compile with: /EHsc /W4
#include <iostream>
#include <functional>

int main()
{
    using namespace std;

    // The following code declares a lambda expression that returns 
    // another lambda expression that adds two numbers. 
    // The returned lambda expression captures parameter x by value.
    auto addtwointegers = [](int x) -> function<int(int)> { 
        return [=](int y) { return x + y; }; 
    };

    // The following code declares a lambda expression that takes another
    // lambda expression as its argument.
    // The lambda expression applies the argument z to the function f
    // and multiplies by 2.
    auto higherorder = [](const function<int(int)>& f, int z) { 
        return f(z) * 2; 
    };

    // Call the lambda expression that is bound to higherorder. 
    auto answer = higherorder(addtwointegers(7), 8);

    // Print the result, which is (7+8)*2.
    cout << answer << endl;
}

输出:

30

可以将 lambda 表达式用于类方法的主体中。 lambda 表达式可以访问该封闭方法可以访问的任何方法或数据成员。 您可以显式或隐式捕获 this 指针,以提供对封闭类的方法和数据成员的访问路径。

在方法可以显式使用 this 指针,如下所示:

void ApplyScale(const vector<int>& v) const
{
   for_each(v.begin(), v.end(), 
      [this](int n) { cout << n * _scale << endl; });
}

您可隐式也捕获 this 指针:

void ApplyScale(const vector<int>& v) const
{
   for_each(v.begin(), v.end(), 
      [=](int n) { cout << n * _scale << endl; });
}

以下示例显示了封装范围值的 Scale 类。

// method_lambda_expression.cpp
// compile with: /EHsc /W4
#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

class Scale
{
public:
    // The constructor.
    explicit Scale(int scale) : _scale(scale) {}

    // Prints the product of each element in a vector object 
    // and the scale value to the console.
    void ApplyScale(const vector<int>& v) const
    {
        for_each(v.begin(), v.end(), [=](int n) { cout << n * _scale << endl; });
    }

private:
    int _scale;
};

int main()
{
    vector<int> values;
    values.push_back(1);
    values.push_back(2);
    values.push_back(3);
    values.push_back(4);

    // Create a Scale object that scales elements by 3 and apply
    // it to the vector object. Does not modify the vector.
    Scale s(3);
    s.ApplyScale(values);
}

输出:

3
6
9
12

Lambda 表达式的示例备注

ApplyScale 方法使用 lambda 表达式打印宽度值和每个产品。vector 对象。 lambda 表达式隐式捕获 this,以便能够访问 _scale 成员。

由于键入 lambda 表达式,因此您可以将它们与 C++ 模板一起使用。 下面的示例显示 negate_all 和 print_all 函数。 negate_all 函数把一元 operator- 应用到 vector 对象中的每个元素上。 print_all 函数打印vector 对象中的每个元素到控制台。

// template_lambda_expression.cpp
// compile with: /EHsc
#include <vector>
#include <algorithm>
#include <iostream>

using namespace std;

// Negates each element in the vector object. Assumes signed data type.
template <typename T>
void negate_all(vector<T>& v)
{
    for_each(v.begin(), v.end(), [](T& n) { n = -n; });
}

// Prints to the console each element in the vector object.
template <typename T>
void print_all(const vector<T>& v)
{
    for_each(v.begin(), v.end(), [](const T& n) { cout << n << endl; });
}

int main()
{
    // Create a vector of signed integers with a few elements.
    vector<int> v;
    v.push_back(34);
    v.push_back(-43);
    v.push_back(56);

    print_all(v);
    negate_all(v);
    cout << "After negate_all():" << endl;
    print_all(v);
}

输出:

34
-43
56
After negate_all():
-34
43
-56

Lambda 表达式的示例备注

有关 C++ 模板的更多信息,请参见 模板

处理异常

 示例

lambda 表达式的主体遵循两个规则结构化异常处理 (SEH) 和 C++ 异常处理。 可以在 lambda 表达式主体中处理引发的异常或将异常处理延迟至封闭作用域。 下面的示例使用 for_each 函数和 lambda 表达式用另一种值的 vector 对象。 使用一个 try/catch 块处理到第一个矢量的无效访问。

// eh_lambda_expression.cpp
// compile with: /EHsc /W4
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;

int main()
{
    // Create a vector that contains 3 elements.
    vector<int> elements(3);

    // Create another vector that contains index values.
    vector<int> indices(3);
    indices[0] = 0;
    indices[1] = -1; // This is not a valid subscript. It will trigger an exception.
    indices[2] = 2;

    // Use the values from the vector of index values to 
    // fill the elements vector. This example uses a 
    // try/catch block to handle invalid access to the 
    // elements vector.
    try
    {
        for_each(indices.begin(), indices.end(), [&](int index) { 
            elements.at(index) = index; 
        });
    }
    catch (const out_of_range& e)
    {
        cerr << "Caught '" << e.what() << "'." << endl;
    };
}

输出:

Caught 'invalid vector<T> subscript'.

Lambda 表达式的示例备注

有关异常处理的更多信息,请参见Visual C++ 中的异常处理

[转到页首]

lambda 表达式捕获的子句不能包含具有托管类型的变量。 但是,可以将具有托管类型为 lambda 表达式的参数列表的参数。 下面的示例由包含值捕获本地非托管 ch 变量并采用 System.String 对象作为其参数的 Lambda 表达式。

// managed_lambda_expression.cpp
// compile with: /clr
using namespace System;

int main()
{
    char ch = '!'; // a local unmanaged variable

    // The following lambda expression captures local variables
    // by value and takes a managed String object as its parameter.
    [=](String ^s) { 
        Console::WriteLine(s + Convert::ToChar(ch)); 
    }("Hello");
}

输出:

Hello!

 

上一篇:SpringBoot02_配置文件、三种读取配置文件方式(下)


下一篇:linux安装和配置 mysql、redis 过程中遇到的问题记录(转)