层次分析法

解决评价类问题常用方法之一
适用于指标数据未知且评价的决策层不多的情况.

层次分析法

一、确定评价指标

根据题目中的背景材料、常识以及网上搜集到的参考资料进行结合,从中筛选出最合适的指标。(优先在别人发表的论文中寻找指标)

二、画出层次结构图

层次分析法

三、确定每个指标所占的权重

1.对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较矩阵(判断矩阵)

层次分析法

ps:矩阵中填的数值通过题目提示及组员之间讨论自行得出。

2.一致性检验

得出的判断矩阵必须通过一致性检验,若不通过则进行相应的调整直到通过。
层次分析法
层次分析法
层次分析法

3.计算权重

计算出每个指标的权重以及各个景点在各个指标中的得分(通过代码进行计算)。
层次分析法
层次分析法
层次分析法
层次分析法

4.汇总结果得到权重矩阵

层次分析法

5.计算各个方案的得分

使用excel计算
要点:F4锁住单元格

代码实现

点击查看代码
%% 如果判断矩阵本身就是一个一致矩阵,那么就没有必要进行一致性检验。

%% 输入判断矩阵
clear;clc
disp('请输入判断矩阵A: ')
% A = input('判断矩阵A=')
%每个元素为1-9以及它们的倒数
A =[1 1 4 1/3 3;
 1 1 4 1/3 3;
 1/4 1/4 1 1/3 1/2;
 3 3 3 1 3;
 1/3 1/3 2 1/3 1]
% matlab矩阵有两种写法,可以直接写到一行:
% [1 1 4 1/3 3;1 1 4 1/3 3;1/4 1/4 1 1/3 1/2;3 3 3 1 3;1/3 1/3 2 1/3 1]
% 也可以写成多行:
[1 1 4 1/3 3;
 1 1 4 1/3 3;
 1/4 1/4 1 1/3 1/2;
 3 3 3 1 3;
 1/3 1/3 2 1/3 1]
% 两行之间以分号结尾(最后一行的分号可加可不加),同行元素之间以空格(或者逗号)分开。

%% 方法1:算术平均法求权重
% 第一步:将判断矩阵按照列归一化(每一个元素除以其所在列的和)
Sum_A = sum(A)

[n,n] = size(A)  % 也可以写成n = size(A,1)
% 因为我们的判断矩阵A是一个方阵,所以这里的r和c相同,我们可以就用同一个字母n表示
SUM_A = repmat(Sum_A,n,1)   %repeat matrix的缩写
Stand_A = A ./ SUM_A
% 这里我们直接将两个矩阵对应的元素相除即可

% 第二步:将归一化的各列相加(按行求和)
sum(Stand_A,2)

% 第三步:将相加后得到的向量中每个元素除以n即可得到权重向量
disp('算术平均法求权重的结果为:');
disp(sum(Stand_A,2) / n)
% 首先对标准化后的矩阵按照行求和,得到一个列向量
% 然后再将这个列向量的每个元素同时除以n即可(注意这里也可以用./哦)

%% 方法2:几何平均法求权重
% 第一步:将A的元素按照行相乘得到一个新的列向量
Prduct_A = prod(A,2)
% prod函数和sum函数类似,一个用于乘,一个用于加  dim = 2 维度是行

% 第二步:将新的向量的每个分量开n次方
Prduct_n_A = Prduct_A .^ (1/n)
% 这里对每个元素进行乘方操作,因此要加.号哦。  ^符号表示乘方哦  这里是开n次方,所以我们等价求1/n次方

% 第三步:对该列向量进行归一化即可得到权重向量
% 将这个列向量中的每一个元素除以这一个向量的和即可
disp('几何平均法求权重的结果为:');
disp(Prduct_n_A ./ sum(Prduct_n_A))

%% 方法3:特征值法求权重
% 第一步:求出矩阵A的最大特征值以及其对应的特征向量

[V,D] = eig(A)    %V是特征向量, D是由特征值构成的对角矩阵(除了对角线元素外,其余位置元素全为0)
Max_eig = max(max(D)) %也可以写成max(D(:))哦~
% 那么怎么找到最大特征值所在的位置了? 需要用到find函数,它可以用来返回向量或者矩阵中不为0的元素的位置索引。
% 那么问题来了,我们要得到最大特征值的位置,就需要将包含所有特征值的这个对角矩阵D中,不等于最大特征值的位置全变为0
% 这时候可以用到矩阵与常数的大小判断运算
D == Max_eig
[r,c] = find(D == Max_eig , 1)
% 找到D中第一个与最大特征值相等的元素的位置,记录它的行和列。

% 第二步:对求出的特征向量进行归一化即可得到我们的权重
V(:,c)
disp('特征值法求权重的结果为:');
disp( V(:,c) ./ sum(V(:,c)) )
% 我们先根据上面找到的最大特征值的列数c找到对应的特征向量,然后再进行标准化。

%% 计算一致性比例CR

CI = (Max_eig - n) / (n-1);
RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];  %注意哦,这里的RI最多支持 n = 15
CR=CI/RI(n);
disp('一致性指标CI=');disp(CI);
disp('一致性比例CR=');disp(CR);
if CR<0.10
    disp('因为CR < 0.10,所以该判断矩阵A的一致性可以接受!');
else
    disp('注意:CR >= 0.10,因此该判断矩阵A需要进行修改!');
end
上一篇:php7的一些特性


下一篇:来了,大话分布式:分布式事务(CAP、两阶段提交、三阶段提交)