题意:一条直线上有n个点,标号从1到n,起点为0,终点为N+1,给定m个限制关系(ci,di),访问ci点前必须先访问di点,每两个点之间是单位距离,求在限制条件下,从起点到终点访问完所有的点的最短距离。
分析:画图模拟一下可知,从起点到终点的N+1这段距离是必须的,若想距离最短,必须去重。
比如以下样例,
10 3
3 7
8 9
2 5
试模拟一下按部就班的访问,从0开始,先访问5,再访问2,->7->3->9->8>11,最后结束,因为要满足限制条件,会重走一些路,有些重走是不可避免的,比如限制条件8 9,为了先访问9再访问8,必须将8~9这一段走2遍,但是限制条件2 5和3 7则不然,不必要将2~5和3~7都重走2遍,画图显然可知,只需将2~7重走2遍就可同时满足这两个限制条件,也就是说,如果两个限制条件走过的路有交叉(可能是包含)的话,那么取并集即可。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
typedef long long ll;
typedef unsigned long long llu;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const ll LL_INF = 0x3f3f3f3f3f3f3f3f;
const ll LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {, , -, };
const int dc[] = {-, , , };
const double pi = acos(-1.0);
const double eps = 1e-;
const int MAXN = + ;
const int MAXT = + ;
using namespace std;
struct P
{
int x, y;
bool operator < (const P& a)const
{
return x < a.x || (x == a.x && y < a.y);
}
};
int main()
{
int N, m;
while(scanf("%d%d", &N, &m) == )
{
if(m == )
{
printf("%d\n", N + );
continue;
}
int ans = N + ;
P num[];
for(int i = ; i < m; ++i)
scanf("%d%d", &num[i].x, &num[i].y);
sort(num, num + m);
int s = num[].x;
int e = num[].y;
for(int i = ; i < m; ++i)
{
if(num[i].x > num[i].y) continue;
if(num[i].x >= s && num[i].y <= e) continue;
else if(num[i].x >= s && num[i].x <= e && num[i].y >= e)
e = num[i].y;
else
{
ans += * (e - s);
s = num[i].x;
e = num[i].y;
}
}
ans += * (e - s);
printf("%d\n", ans);
}
return ;
}