sql优化1

一、背景

在使用JPA时常常出现业务复杂不方便使用名称解析的情况,这时可采用原生SQL来实现,SQL在请求并发数量较多时效率会影响系统的整体效率,在此记录一下sql优化的常用几种方法。

二、优化方法

1、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num列设置默认值0,然后通过=等号查询:

select id from t where num=0

4、应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

此查询可优化为:select id from t where num=10
union all
select id from t where num=20

5、下面的查询也将导致全表扫描:
select id from t where name like ‘%abc%‘

若要提高效率,可以考虑全文检索。

6、in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)

若查询的数值为连续值,则可以优化为between来查询:

select id from t where num between 1 and 3

7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问

计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,

因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100
应改为:
select id from t where num=100*2

9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)=‘abc‘--name以abc开头的id
select id from t where datediff(day,createdate,‘2005-11-30‘)=0--‘2005-11-30‘生成的id

应改为:
select id from t where name like ‘abc%‘
select id from t where createdate>=‘2005-11-30‘ and createdate<‘2005-12-1‘

10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统

使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12、不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)

13、很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)

14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会

去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或

update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太

多则应考虑一些不常使用到的列上建的索引是否有必要。

16、应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值

改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要

考虑是否应将该索引建为 clustered 索引。

17、应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值

改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要

考虑是否应将该索引建为 clustered 索引。

18、尽可能的使用char/nchar 代替 varchar/nvarchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来

说,在一个相对较小的字段内搜索效率显然要高些。

19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21、避免频繁创建和删除临时表,以减少系统表资源的消耗。

转载https://blog.csdn.net/wangzheweini/article/details/107019426

sql优化1

上一篇:Node.js理解


下一篇:SpringBoot数据库连接加密