Given an array A
of integers, return the length of the longest arithmetic subsequence in A
.
Recall that a subsequence of A
is a list A[i_1], A[i_2], ..., A[i_k]
with 0 <= i_1 < i_2 < ... < i_k <= A.length - 1
, and that a sequence B
is arithmetic if B[i+1] - B[i]
are all the same value (for 0 <= i < B.length - 1
).
Example 1:
Input: [3,6,9,12] Output: 4 Explanation: The whole array is an arithmetic sequence with steps of length = 3.
Example 2:
Input: [9,4,7,2,10] Output: 3 Explanation: The longest arithmetic subsequence is [4,7,10].
Example 3:
Input: [20,1,15,3,10,5,8] Output: 4 Explanation: The longest arithmetic subsequence is [20,15,10,5].
分析:
对于每个数字A[i],我们需要知道这个数字A[i]到它之前每个数字A[j] (0 < j < i)的差diff,以及这个差值diff在A[j]那里已经存在了多少次了,并且用那个次数作为A[i]对于A[j].
1 class Solution { 2 public int longestArithSeqLength(int[] A) { 3 int res = 2, n = A.length; 4 HashMap<Integer, Integer>[] dp = new HashMap[n]; 5 for (int j = 0; j < A.length; j++) { 6 dp[j] = new HashMap<>(); 7 for (int i = 0; i < j; i++) { 8 int d = A[j] - A[i]; 9 dp[j].put(d, dp[i].getOrDefault(d, 1) + 1); 10 res = Math.max(res, dp[j].get(d)); 11 } 12 } 13 return res; 14 } 15 }