AtCoder Beginner Contest 169(题解)

AtCoder Beginner Contest 169(题解)

E - Count Median

结论题

给定 n n n个 x i ∈ [ a i , b i ] x_i\in[a_i,b_i] xi​∈[ai​,bi​],求中位数的个数。

定义: k = ⌊ n 2 ⌋ k=\lfloor\dfrac{n}{2}\rfloor k=⌊2n​⌋,对 a , b a,b a,b进行排序后,为 a k + 1 a_{k+1} ak+1​为 a i a_i ai​的中位数, b k + 1 b_{k+1} bk+1​为 b i b_i bi​的中位数。

1. n n n为奇数,则范围是 [ a k + 1 , b k + 1 ] [a_{k+1},b_{k+1}] [ak+1​,bk+1​]。

2. n n n为偶数,定义则范围是 [ a k + a k + 1 , b k + b b + k + 1 ] [a_{k}+a_{k+1},b_k+b_{b+k+1}] [ak​+ak+1​,bk​+bb+k+1​]


F - Knapsack for All Subsets

转移与物品个数有关的背包问题

考虑令 d p [ i ] [ j ] dp[i][j] dp[i][j]前 i i i个物品答案为 j j j的方案数。目标是 d p [ n ] [ s ] dp[n][s] dp[n][s]。

初始 d p [ 0 ] [ 0 ] = 1 × 2 n − 0 = 2 n dp[0][0]=1\times 2^{n-0}=2^n dp[0][0]=1×2n−0=2n

有转移方程: d p [ i ] [ j ] = ( d p [ i ] [ j ] + d p [ i − 1 ] [ j − a [ i ] ] 2 ) dp[i][j]=(dp[i][j]+\dfrac{dp[i-1][j-a[i]]}{2}) dp[i][j]=(dp[i][j]+2dp[i−1][j−a[i]]​)

因为每多选一个物品,剩余未选的物品数就少一,而方案数与 2 n − k 2^{n-k} 2n−k有关, k k k为子集大小。

可以利用滚动数组倒序,优化到一维。

c o d e code code

// Problem: F - Knapsack for All Subsets
// Contest: AtCoder - AtCoder Beginner Contest 169
// URL: https://atcoder.jp/contests/abc169/tasks/abc169_f
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
// Date: 2021-03-12 20:17:55
// --------by Herio--------

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull; 
const int N=3e3+5,M=2e4+5,inf=0x3f3f3f3f,mod=998244353;
#define mst(a,b) memset(a,b,sizeof a)
#define PII pair<int,int>
#define fi first
#define se second
#define pb emplace_back
#define SZ(a) (int)a.size()
#define IOS ios::sync_with_stdio(false),cin.tie(0) 
void Print(int *a,int n){
	for(int i=1;i<n;i++)
		printf("%d ",a[i]);
	printf("%d\n",a[n]); 
}
int n,s,a[N];
ll ksm(ll a,ll n,int m=mod){
	ll ans=1;
	while(n){
		if(n&1) ans=ans*a%m;
		a=a*a%m;
		n>>=1;
	}
	return ans;
}
ll dp[N];
int main(){
	scanf("%d%d",&n,&s);
	ll inv2=ksm(2,mod-2);
	dp[0]=ksm(2,n);
	//printf("--%lld %lld\n",dp[0],inv2);
	for(int i=1;i<=n;i++){
		int x;scanf("%d",&x);
		for(int j=s;j>=x;j--)
			dp[j]=(dp[j]+dp[j-x]*inv2%mod)%mod;
	}printf("%lld\n",dp[s]);
	return 0;
}
上一篇:LeetCode——169. 多数元素


下一篇:169. 多数元素