实验主要分为四个步骤:
- load datasets
- build network
- train
- test
构建的网络模型VGG13 一共13层
俺们老师给的待完善的代码如下,需要自己填写带下划线的部分
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
tf.random.set_seed(2345)
conv_layers = [ # 5 units of conv + max pooling
#Please build vgg13 network according to the demonstration in readme file, bellow is a instance for unit 1
#Please complete other parts. (unit 2 to unit 5)
# unit 1
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 2
#____________________________________________________________________________
#____________________________________________________________________________
#____________________________________________________________________________
# unit 3
#____________________________________________________________________________
#____________________________________________________________________________
#____________________________________________________________________________
# unit 4
#____________________________________________________________________________
#____________________________________________________________________________
#____________________________________________________________________________
# unit 5
#____________________________________________________________________________
#____________________________________________________________________________
#____________________________________________________________________________
]
def preprocess(x, y):
# [0~1]
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x,y
(x,y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)
train_db = tf.data.Dataset.from_tensor_slices((x,y))
train_db = train_db.shuffle(1000).map(preprocess).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
test_db = test_db.map(preprocess).batch(64)
sample = next(iter(train_db))
print('sample:', sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))
def main():
# [b, 32, 32, 3] => [b, 1, 1, 512]
conv_net = Sequential(conv_layers)
# Please add your code in blank
fc_net = Sequential([
layers.Dense(____________________________),
layers.Dense(____________________________),
layers.Dense(100, activation=None), #you can try other activation function to evaluate and compare
])
# Please add your code in blank
conv_net.build(input_shape=[None, ____, _____, ___])
fc_net.build(input_shape=[None, ____])
optimizer = optimizers.Adam(lr=1e-4)
# [1, 2] + [3, 4] => [1, 2, 3, 4]
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(50):
for step, (x,y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b, 32, 32, 3] => [b, 1, 1, 512]
out = conv_net(x)
# flatten, => [b, 512]
out = tf.reshape(out, [-1, 512])
# [b, 512] => [b, 100]
logits = fc_net(out)
# [b] => [b, 100]
y_onehot = tf.one_hot(y, depth=100)
# compute loss
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
# Please add your code in blank
grads = tape.gradient(___________, ______________)
optimizer.apply_gradients(zip(__________, ___________))
if step %100 == 0:
print(epoch, step, 'loss:', float(loss))
total_num = 0
total_correct = 0
for x,y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct)
acc = total_correct / total_num
print(epoch, 'acc:', acc)
if __name__ == '__main__':
main()
这是我完善过后的代码
import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.random.set_seed(2345)
# 首先我们知道Sequential这个容器,接受一个13层的list.我们先组成list;网络的第一部分。
conv_layers = [ # 5 units of conv + max pooling
# unit 1
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 2
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 3
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 4
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
# unit 5
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same')
]
# 进行数据预处理,仅仅是类型的转换。 [0~1]
def preprocess(x, y):
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y
# load datasets 根据要求使用的是cifar100
(x, y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y) # 或者tf.squeeze(y, axis=1)把1维度的squeeze掉。
y_test = tf.squeeze(y_test) # 或者tf.squeeze(y, axis=1)把1维度的squeeze掉。
print(x.shape, y.shape, x_test.shape, y_test.shape)
# 训练集
train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.shuffle(1000).map(preprocess).batch(128)
# 测试集
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocess).batch(128)
# 测试一下sample的形状。
sample = next(iter(train_db))
print('sample:', sample[0].shape, sample[1].shape,
tf.reduce_min(sample[0]), tf.reduce_max(sample[0])) # 值范围为[0,1]
def main():
# 把参数放进Sequential容器
# 输入:[b, 32, 32, 3] => 输出[b, 1, 1, 512]
conv_net = Sequential(conv_layers)
# conv_net.build(input_shape=[None, 32, 32, 3])
# x = tf.random.normal([4, 32, 32, 3])
# out = conv_net(x)
# print(out.shape)
# 创建全连接层网络;网络的第二部分;第二部分的输入为第一部分的输出。
fc_net = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(100, activation=None),
])
# 这里其实把一个网络分成2个来写,
conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])
# 创建一个优化器
optimizer = optimizers.Adam(lr=1e-4)
conv_net.summary()
fc_net.summary()
# 下面的+表示拼接。python中的list列表拼接,2个列表变为一个。
# 例如:[1, 2] + [3, 4] => [1, 2, 3, 4]
variables = conv_net.trainable_variables + fc_net.trainable_variables
for epoch in range(50):
for step, (x, y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b, 32, 32, 3] => [b, 1, 1, 512]
out = conv_net(x)
# 之后squeeze或者reshape为平坦的flatten;flatten, => [b, 512]
out = tf.reshape(out, [-1, 512])
# 送入全连接层输入,得到输出logits
# [b, 512] => [b, 100]
logits = fc_net(out)
# [b] => [b, 100]转换为热编码。
y_onehot = tf.one_hot(y, depth=100)
# compute loss 结果维度[b]
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
# 梯度求解
grads = tape.gradient(loss, variables)
# 梯度更新
optimizer.apply_gradients(zip(grads, variables))
if step % 100 == 0:
print(epoch, step, 'loss:', float(loss))
# 做测试
total_num = 0
total_correct = 0
for x, y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
logits = fc_net(out)
# 预测可能性。
prob = tf.nn.softmax(logits, axis=1)
pred = tf.argmax(prob, axis=1)
pred = tf.cast(pred, dtype=tf.int32)
# 拿到预测值pred和真实值比较。
correct = tf.cast(tf.equal(pred, y), dtype=tf.int32)
correct = tf.reduce_sum(correct)
total_num += x.shape[0]
total_correct += int(correct) # 转换为numpy数据
acc = total_correct / total_num
print(epoch, 'acc:', acc)
# colab源码:https://github.com/jupyter/colaboratory
if __name__ == '__main__':
main()
在我机子上跑的结果,从上午十点开始跑的,一直跑了有十个小时,才跑了7/10,还没跑完。好慢啊。
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 32, 32, 64) 1792
conv2d_1 (Conv2D) (None, 32, 32, 64) 36928
max_pooling2d (MaxPooling2D (None, 16, 16, 64) 0
)
conv2d_2 (Conv2D) (None, 16, 16, 128) 73856
conv2d_3 (Conv2D) (None, 16, 16, 128) 147584
max_pooling2d_1 (MaxPooling (None, 8, 8, 128) 0
2D)
conv2d_4 (Conv2D) (None, 8, 8, 256) 295168
conv2d_5 (Conv2D) (None, 8, 8, 256) 590080
max_pooling2d_2 (MaxPooling (None, 4, 4, 256) 0
2D)
conv2d_6 (Conv2D) (None, 4, 4, 512) 1180160
conv2d_7 (Conv2D) (None, 4, 4, 512) 2359808
max_pooling2d_3 (MaxPooling (None, 2, 2, 512) 0
2D)
conv2d_8 (Conv2D) (None, 2, 2, 512) 2359808
conv2d_9 (Conv2D) (None, 2, 2, 512) 2359808
max_pooling2d_4 (MaxPooling (None, 1, 1, 512) 0
2D)
=================================================================
Total params: 9,404,992
Trainable params: 9,404,992
Non-trainable params: 0
_________________________________________________________________
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 256) 131328
dense_1 (Dense) (None, 128) 32896
dense_2 (Dense) (None, 100) 12900
=================================================================
Total params: 177,124
Trainable params: 177,124
Non-trainable params: 0
_________________________________________________________________
0 0 loss: 4.605703830718994
0 100 loss: 4.573154449462891
0 200 loss: 4.274768829345703
0 300 loss: 4.280937194824219
0 acc: 0.0626
1 0 loss: 4.13004207611084
1 100 loss: 4.003829002380371
1 200 loss: 3.8823888301849365
1 300 loss: 4.033702373504639
1 acc: 0.0968
2 0 loss: 3.9909071922302246
2 100 loss: 3.92575740814209
2 200 loss: 3.734340190887451
2 300 loss: 3.5258753299713135
2 acc: 0.1601
3 0 loss: 3.586297035217285
3 100 loss: 3.733517646789551
3 200 loss: 3.234541654586792
3 300 loss: 3.192173957824707
3 acc: 0.2045
4 0 loss: 3.4989943504333496
4 100 loss: 3.281524658203125
4 200 loss: 3.20217227935791
4 300 loss: 3.265291690826416
4 acc: 0.2305
5 0 loss: 3.2033958435058594
5 100 loss: 2.947575569152832
5 200 loss: 2.8855361938476562
5 300 loss: 2.885098934173584
5 acc: 0.2497
6 0 loss: 2.8828682899475098
6 100 loss: 3.0514018535614014
6 200 loss: 2.7332396507263184
6 300 loss: 3.0623221397399902
6 acc: 0.2771
7 0 loss: 3.0236001014709473
7 100 loss: 2.7354226112365723
7 200 loss: 2.4895710945129395
7 300 loss: 2.585233211517334
7 acc: 0.2853
8 0 loss: 2.621670722961426
8 100 loss: 2.807131767272949
8 200 loss: 2.6461825370788574
8 300 loss: 2.770937204360962
8 acc: 0.3049
9 0 loss: 2.8133463859558105
9 100 loss: 2.390254020690918
9 200 loss: 2.6979241371154785
9 300 loss: 2.122256278991699
9 acc: 0.3216
10 0 loss: 2.4884862899780273
10 100 loss: 2.3237156867980957
10 200 loss: 1.976022481918335
10 300 loss: 1.9411729574203491
10 acc: 0.341
11 0 loss: 2.3988051414489746
11 100 loss: 2.157597541809082
11 200 loss: 1.783387541770935
11 300 loss: 2.2747488021850586
11 acc: 0.3428
12 0 loss: 2.081052780151367
12 100 loss: 1.9125139713287354
12 200 loss: 1.9749314785003662
12 300 loss: 1.9473168849945068
12 acc: 0.3481
13 0 loss: 1.9426753520965576
13 100 loss: 1.6028225421905518
13 200 loss: 1.654457688331604
13 300 loss: 1.5368409156799316
13 acc: 0.348
14 0 loss: 1.9074410200119019
14 100 loss: 1.2604421377182007
14 200 loss: 1.33577299118042
14 300 loss: 1.4747681617736816
14 acc: 0.3456
15 0 loss: 1.408400535583496
15 100 loss: 1.4740254878997803
15 200 loss: 1.0276473760604858
15 300 loss: 1.2776360511779785
15 acc: 0.3468
16 0 loss: 1.1048237085342407
16 100 loss: 1.0582349300384521
16 200 loss: 0.7934116721153259
16 300 loss: 0.9454417824745178
16 acc: 0.3392
17 0 loss: 1.0203744173049927
17 100 loss: 0.5127657651901245
17 200 loss: 0.6567991971969604
17 300 loss: 0.74583899974823
17 acc: 0.3313
18 0 loss: 0.6991515159606934
18 100 loss: 0.49814605712890625
18 200 loss: 0.5801453590393066
18 300 loss: 0.5829309225082397
18 acc: 0.3317
19 0 loss: 0.4286673367023468
19 100 loss: 0.5325354337692261
19 200 loss: 0.3180204927921295
19 300 loss: 0.48299315571784973
19 acc: 0.3328
20 0 loss: 0.5821853280067444
20 100 loss: 0.24863868951797485
20 200 loss: 0.25470632314682007
20 300 loss: 0.23631633818149567
20 acc: 0.3273
21 0 loss: 0.328163743019104
21 100 loss: 0.19887247681617737
21 200 loss: 0.20321449637413025
21 300 loss: 0.37942832708358765
21 acc: 0.3366
22 0 loss: 0.3218492865562439
22 100 loss: 0.3823566734790802
22 200 loss: 0.2301541566848755
22 300 loss: 0.23679348826408386
22 acc: 0.3281
23 0 loss: 0.4278489351272583
23 100 loss: 0.17314794659614563
23 200 loss: 0.19846001267433167
23 300 loss: 0.15466056764125824
23 acc: 0.3397
24 0 loss: 0.3409762978553772
24 100 loss: 0.19322939217090607
24 200 loss: 0.2183304876089096
24 300 loss: 0.10360629856586456
24 acc: 0.3304
25 0 loss: 0.184882253408432
25 100 loss: 0.15770471096038818
25 200 loss: 0.11995077133178711
25 300 loss: 0.17878545820713043
25 acc: 0.3261
26 0 loss: 0.14563722908496857
26 100 loss: 0.10653193295001984
26 200 loss: 0.06353025138378143
26 300 loss: 0.10915520042181015
26 acc: 0.3338
27 0 loss: 0.159509539604187
27 100 loss: 0.049696896225214005
27 200 loss: 0.05399111658334732
27 300 loss: 0.13322849571704865
27 acc: 0.3307
28 0 loss: 0.36089855432510376
28 100 loss: 0.08262927830219269
28 200 loss: 0.18748503923416138
28 300 loss: 0.10662227123975754
28 acc: 0.3373
29 0 loss: 0.12509845197200775
29 100 loss: 0.08384230732917786
29 200 loss: 0.10343224555253983
29 300 loss: 0.13146759569644928
29 acc: 0.3421
30 0 loss: 0.16149979829788208
30 100 loss: 0.09493231028318405
30 200 loss: 0.11518850922584534
30 300 loss: 0.2519652545452118
30 acc: 0.3253
31 0 loss: 0.16040371358394623
31 100 loss: 0.08821642398834229
31 200 loss: 0.11975134164094925
31 300 loss: 0.2427465319633484
31 acc: 0.3342
32 0 loss: 0.11135876178741455
32 100 loss: 0.11297046393156052
32 200 loss: 0.11937586963176727
32 300 loss: 0.04514150321483612
32 acc: 0.3312
33 0 loss: 0.10594180226325989
33 100 loss: 0.15190201997756958
33 200 loss: 0.0702848881483078
33 300 loss: 0.03502190113067627
33 acc: 0.3291
34 0 loss: 0.15665759146213531
34 100 loss: 0.1422211229801178
34 200 loss: 0.08091887831687927
34 300 loss: 0.1349743902683258
34 acc: 0.3378
35 0 loss: 0.11525900661945343
建议上colab上跑去,我也想去colab上跑,chrome打不开,卡在了第一步T_T。