3028: 食物
Time Limit: 3 Sec Memory Limit: 128 MB
Submit: 569 Solved: 382Description
明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等当然,他又有一些稀奇古怪的限制:每种食物的限制如下:承德汉堡:偶数个可乐:0个或1个鸡腿:0个,1个或2个蜜桃多:奇数个鸡块:4的倍数个包子:0个,1个,2个或3个土豆片炒肉:不超过一个。面包:3的倍数个注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。Input
输入样例11输出样例11输入样例25输出样例235数据范围对于40%的数据,1<=N<=100000;对于所有数据,1<=n<=10^500;Output
Sample Input
Sample Output
HINT
Source
【分析】
这题目测是可以乱搞的?
然后还是生成函数比较符合一般性啦。
$(1+x^2+x^4+...)*(1+x)*(1+x+x^2)*(x+x^3+x^5+...)*(1+x^4+x^8+...)*(1+x+x^2+x^3)*(1+x)*(1+x^3+x^6+...)$
然后等比数列求和 ($x^{inf}=0$)
$=\dfrac{1−x^2}{1−x}*\dfrac{1−x^2}{1−x}*\dfrac{1−x^3}{1−x}*\dfrac{1−x^4}{1−x}*\dfrac{1}{1−x^2}*\dfrac{x}{1−x^2}*\dfrac{1}{1−x^4}*\dfrac{1}{1−x^3} $
$=\dfrac{x}{(1−x)^{4}}$
【打得有点辛苦
然后$G(x)=\dfrac{1}{(1-x)^m}=(1+x+x^2+x^3+...)^m$的x^n的系数是,把n分成m分可空的。即$C_{n+m-1}^{m-1}$
然后乘一个x,就是第n-1项的系数即为答案,即$C_{n-1+4-1}^{4-1}=C_{n+2}^{3}=\dfrac{n*(n+1)*(n+2)}{6}$
%%%http://blog.csdn.net/clove_unique/article/details/70748541
【生成函数做这道题感觉很优越啊。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 10007
#define LL long long char s[]; int main()
{
scanf("%s",s);
int l=strlen(s),n=;
for(int i=;i<l;i++)
{
n=n*+s[i]-'';
n%=Mod;
}
n=1LL*n*(n+)*(n+)/%Mod;
printf("%d\n",n);
return ;
}
2017-04-25 22:12:06