PyTorch实现Mnist数据集

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

batch_size = 64

transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.l1 = torch.nn.Linear(784, 512)
        self.l2 = torch.nn.Linear(512, 256)
        self.l3 = torch.nn.Linear(256, 128)
        self.l4 = torch.nn.Linear(128, 64)
        self.l5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.l1(x))
        x = F.relu(self.l2(x))
        x = F.relu(self.l3(x))
        x = F.relu(self.l4(x))
        return self.l5(x)


model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print("Accuracy on test set: %d %%" % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print()

最后结果如下:
Accuracy on test set: 97 %
[7,   300] loss: 0.059
[7,   600] loss: 0.063
[7,   900] loss: 0.066
Accuracy on test set: 97 %
[8,   300] loss: 0.051
[8,   600] loss: 0.052
[8,   900] loss: 0.048
Accuracy on test set: 97 %
[9,   300] loss: 0.042
[9,   600] loss: 0.042
[9,   900] loss: 0.041
Accuracy on test set: 97 %
[10,   300] loss: 0.030
[10,   600] loss: 0.033
[10,   900] loss: 0.038
Accuracy on test set: 97 %


Process finished with exit code 0

学习深度学习时手敲了一下这个代码记录一下。

主要是装环境浪费了好多时间,这个代码不需要提前下载数据集,代码运行可以自己下载数据集

供大家学习参考

上一篇:pytorch的杂七杂八


下一篇:【学习笔记】实战手写数字识别