canvas贝塞尔曲线 - 2

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAugAAAH7CAIAAAARkv1vAAAgAElEQVR4nOy9e5Ab13ngO7Z37dlsaMdWnFSoZCvLZLnr8l1HtmUrcsVW5UarJK6Uorplp3K1xc36XidRqVZXSW0ovkyakixaVERKImU9KI1NUeJbEik+hhQ1HHBmMIPB4DHvBwYDNLqBBtDobrwbQAPo7vvHIUEMugH0a2Yaw+9XrlRFHHz4zunuc344fR5dEgAAAAAAQIfQtdYJAAAAAAAAqAXEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjgHEBQAAAACAjkEuLoNPdi3j/p5A2yh6PrPSWDEnoAWBnvuXX7EnBxv+4s65pBzjc58+9Pgj927evHHD7QJv2Lh584NbftZz0b2U5tc6x5Wi/X1gWSxxg8rqrxUbNm7evPneRx4/dGGa5PR8G+/Zu3F5yI1PDjJml8kiVWsCfJqY7uv52ZYH65/s7rs23bwIxPp9rs0FxKVz4TD74Uf/dWSt0zALEBdJkvj0Ut/O797VraLL+crfHbZjujoba2NxceHjcxd2PnFS8c6zxA2qSVyW3VH37bThGvvN9LUfLbtXN/6oV2sIdViiag3Bx8dPPXHfhq7WdN/13Z196/GxNhkQl06Ej89d2ImeAWu16ka448WFx2072zZsDWz8Qc/kCvy+XUusKy4cZj/86Kbu5neeJW5Q3eLS1dXV1f1Aj1+DeCz/Lo0f1oQlqlY3PG7beo+KXyO32PiD91esJtcHIC4dBof17fv+ptvPgGVadcPc2eLCLbz5gIaWbVkrt1K/ctcGK4pL46/ldSsuXV1dG7eOpNV9Ez+268u1j3Vv2roSr4huYYmq1Qfv79HxaK+kBa4DQFw6Cyu26iaxjovWDn1NWx0rM69gbbDifdBJjYlRcenq+urheTVfFH7/4dpNu55uQFMx8mhDpTYHxKWzsGKrbhLruGit4f1vKnY13Zu+v++020fdmq/HMdh0X0+T1+TdW3rXSSNnxfugkxoT9fXHpyls+oLC68k/PDjT/nvmD3/11r0HgwNNaKItG+57oqdvGmPQVBY+Tfnsys/1xr0eqFhFQFw6Cyu26iaxjovWEsVfyBseOjweb9JmcdiFxzbJm8MvPzmocojf2ljxPuikxkRz/fEzB7+6/BNdDxwLrU6y65v6ManbT3bPgvLcW2byoMxyuh9+P7zKSXcGIC6dhRVbdZNYx0VrwbJ5Ardaq/a/YJnBJzc2fqzrL06th0bOivdBJzUmOupP9hErl69jUHi02z3ZCo81XApFVktcGh+NWw8TR05fOLTlwdqa9g0bNz+45dCFuWa/Nutp+Gz3XZvufWRf7aNaynEr0qZb61C779q0+cEth0633i+j4Svu7wmgybOP3HszpQ0b6zO6CZ9eurlHR/0WHbU9OvoUN1RQ8+JaqYQcOX2h+XfZWxRPqXAoe3vP9kfuvVVV3XdtuveR7T2qFuY2fnbDxs0PPlH7qAmTc1cgZ4nD5J+9fU2b3ddqaVxO2qX6pY98Aw15hajtkBortkUx9N9Qdakbuw/0PXa6UpdVjAJ16WlqO1E7UN/q3EqmXbvTGj3i15h4yxGXW5fvdj1u2Lj53ke2N2m6FL9ABcsrz7LNefNqknuLislD4VN/0bIeTHymVZbXffRvlgdq/ftIVoCH348q/JnOa1RjDcWl5erP7k2PtloQxsdH9jX7bPemR3smGbXlaLcGtXvToz3NBu1lV96v+Eqz7nZlJnseVRjll3/nqYbhRB3iwuO9Sm8U5MVTXk+rcFu3zH7DffvGWnS43MKppp9FG0isjLgYybnlvYEWIhsUF37wycbc/vD5SZV9lryNa+xwzBUXgzcUwoT7QPtjpzv1FRIXPj7erh1oV4/N0SEu/jfvXfaJL+/1NPnLdg3YhvuUdyFZLXFZ3ea8JZ69jd6iakQ03btlw8bND27Z9rOei9fdvijTUJsrKC5Nyvvszxt+XLWqgdszn25W+I+uNb7ANnKNaqyVuDz2ZvvJ1s0mVfP+938gHydvKPvWJxs8UakcSm8VFTNRXlbfUOw/fOABpbRqt6vi8H7TEiwfVNQqLlomsyuPXzbe1s/3tM2+6UAoM7a33S4GGx7a+tjy1tMEcTGSM+8/9lCbTVW6N23ted6QuMwc/MOGmKrmRd4k+v7DjSk9ZqsvjIniYvyGksy6DzQ+dkZSXwlxUXFj3ULXshLN4iJrl768a0zp8vF474/UNGDd9+yV/RxYFXFZ3ea8DY0yaNbEoRUTl+bllY0dNTeXRm+R3UoGr1GNtRIXdShNqlaYSqYKWU7aFqoptSFqnsaacSq8FGj3lXWl1yYuzdapNEXhadTR1DSZS8b0btG1INCwuBjJWYtktsq5JbztMUMB5N6zvEpMa+TMuKFMuw80PXbGUjdfXJhrP9Kyx6COBTuqxYVPU9h03+HGEZQm80GN/OxaDXFZ5ea8LbJo3VtN2eR8xcSlVXnb+shNGkeZGgzH+DWqsbbi0n3P1lvHM3Ckq0c+jiIfs1QI1L3p0R4XisKnl+yyJ1E5J/mM7w0P/dzuYzhJkjjG1ycbzZKv2lBx5WtXuPHXcfc9Wy/UFsShFXGHZeWXN/+qWiWZI3U/8OytV/h8mpg+LR8239Lb+DwqF27jDw7frCM+vdSnsBuk7I1mevBJ2ezTDfft7ENRJI5UXJCpWDSd4qI9Z6X5I/VRCFezAXNt4iK/mbVNxUv3bmmZgFmNnBk3lHn3gZbHzpxnQW2j2PbP5O5W1wQq31ea15UY28elSW8hfyK6Nz12GiWunLfqO1l5GK5RfdpV7So35zqugkmzbFdVXGrlbXwtrVgR7UZmTLhGNdZQXOQ/JlSsy5O9OOx+4E3Z6jLFHwfLc5LVsUI2Mj1s9AjFK7/xRxd8tfeSHMcp/+29b/oV6jHQcz96v3no9HW3L0rJpympEZfG7kw+25OffL7hp7o8H4XCyRs1hYa44XeF/HXGxidtjS8wlU3cFHHRk7N8cEyhOVfe6nZ1xUWhwCshLmbcUCbeB1oeO3OeBbPEpfGHa9f9r8obL9ntqXZSxU30i8uGhw43mVYjm06l8FipfOG0nCa/weXhW1ftqjfnbelUcWlW3sY7QGHoSdZsLq9gU65RjbUTF8X7Wjb23RBJ5i1fPTij9HQo/LxbFkk2KVKxcZC1aQ3ZKFz5+99sMrKrSlzao24cmGOiPvf104e2bXlw88ZNSjPt9NzWSjeR/Df/8kCy/qrZmhmF5tYMcdGTs+zfm+Ss9NJSm7jMH2oMYElxMeGGMvM+0PLYmfMsmCQuja2XctfOj+3atHHzvY883vznS0v0ikv3Xd/dcqhPcU1HY0jlFybMheXTCrufHGyTudLIZpPXYy2rdvWb87Z0pri0KK9MSxoHJhv/oOEmMeca1Vg7cVFs4mV9xvJIoWMPqExOvlxj2Z82NiHNpkQ2/t3ylwryK6+89EuS5ErWfc9WPSfJm7XJhY7bWrmuZaq5PNDI1oaB+qaNmYo7RLu46MpZZscK7w5U59ySDhlx0ZXJyt0HWh47E1JX+hNd4iKbrrl8JrVZGNzyv/uerY1nRMuss8kD0fh3zRcnSZLUbNZMk3dVLat29ZvztnSkuLQsr2zEZPmPQtlciIYn3JxrVGPNxEVldS8fxZc1f83nO8ketvovbPmPrdJe/ijKrnyrcRTZMHFXVxdaKv/4odPDt6e7tMaYuHAMNj18+tDjj3ztrsbx2fa3tfI3yRJa9nJPZpotZtbLfMEEcdGTs+qbQ1XOLTF/jsvyJ2LFxUXtDWXqfaDpsTOcuuJX6hIXPS2rDoyfVdQoD6rv8sYStugIld8RNZ+L3Kry1qI5b0cniku78jZ2YfXf3G4SjEnXqEZ7cWmjzYqfMU9clle3lke/1d/qf7aX/UiSJdvyJ1TbKdXdd216cMuh025fC4fRKi4c43Nf7PmZbNstGaaJy7JroiVd8/dxsULOLVFYVaTpV7h8VdFyIViJDeh03VCm1qm2x85o6opfqUdcVmt7WvV1zTHRaJPjr5ZNCda1WK+rq0VPqGmwRTGHNW/O29DuN4VuVlBc2pa38btvv+1p/i/N0laNclZycdHxI7LNCx7FvJtUktXFZdk3av6hqm7/OXS8nuI+TupbJQ6zH/67r6hfedn2tm7SCFlaXCyQc2vk5qHmd8It5DvQNTSOZoqLoRtqZcWlXaUbfhbWqbjU4PHTskN16roe3eLSZCNDjYMtijlYoTlvSbutCpoS6HnoK4/sa7qD7AqKS/vyysZVbrZWjWMxKpbDqka5fHJxMeOoC/k7ULVRtYlLq7GtNbjTVW0ednPDbPkAtYyNP+rFG+9ddfXIDG5V8qMNG+995PGf9Vx0+5g+zbd1k+dDowS0kPoVEBcL5NwahZ1zFWdshk89fNd3n2jYll5h59yGB8+0Rs7oDWVqnWp77Mx4Fta7uEitB+9MFRflCbltt9qzanPeFIVHW9XedXVP9YaNDz7RY28YgF85cVFT3sYZuMhcGm8ehYKuvLjIXka1L4+KQRpzxEXDaFDLd2omTXE19tKaTxPoJfu9TQeu5Xs4qMk8cKzhB82G+3be2iuiWeorJC7mzhdZHXFZxTkuymcVyS563Rq57ru+e3NPdYWFc7LFHiobuXbLrIzfUKbWqZbHzpxnYWXmuBjrGJuis3FrMc/bxMk5yu+IVCze0SQua9Gcy1B4tJusga1DaaXi8l8jJj3TesvbOEX3y3s9jd6iuObMrFUlt5CLi2wGbKttYJSKojgQYo64qJeqNquKGsuo7x418U7nGOWXzY0hVdSjbPdCpadllcTF3BU6qyMuq7iqSFJzOrRCW7bhvp375LuvK4zVqOsr2xTDjBvKzDrV8NiZ9Cys0KqiZnNXZw5+w8B6aH1dhMJ+FbWXlo1Tq9uvc1ZG1zuim7SsWss155IkKf+0aF1WpQqSaYApz7SB8ja8Fvry3mMN/0F5/x5zrlENBXFROAGlxcEBCgqtdF+bIy7yME0cVmF38WUVpWJWjgrMXyYgn63ZUE/t61FVTZt3W7eRAJlAGtkTZZXERb7ZapOcFQa9dfyOUBxE3fDQ4do5Y3x6ya40gXI5ijusqpp/p/DKqb4YptxQZt4H6h87s54Fc8RFbm/K7w5k6w+1zHvSJy5KAyF1WtX4KqDNT1n139HV/cBBdUdJtqxaqzbnSo/2xh80HqB7E+WjoOQaYMYzbai8Dfdnd7fCyyM55lyjGgriIkXP/0DBizd9f9+Faaxm/3ya8rlPK23SbWikqN2vH/miYvnmk3zc1nbnXIWdwOUuzPRuuavVTx8NV55PUzf3wXr8kXs3b7yryfZbsqvbeBvI6lH2q6292ylNxVspcVEYMP3yY32NO6aq3IV2lcRF3c65yoPeegZAm52+1fDIpZc++offU/q7rq6uru4HjikVVTZzQe4LiuVoKS66bigT7wMD4qLzWVC71LJdZrLWS+m+sj3WoDfq95lXLnSLe5JPU1Gf8iEpy3JXkzg/c/Abd226ea7x8DS27Fxj5cEWDYdItq7a1W7O1aI8oadrw31P9Nh9t76fY7DpC/u+rzQTS+nXiBnPtLHyKlhRjebbPJtyjWooiUuz6laH8hiIWeKiOCng9llFHKN05E9XV5fssigPwNcdG6J0iklDDPVXXmETl40P7qs7rAjdvbJzdGSDV/IdSB8+jnHo46MzUUlhy4yuro0/6HGRN0/ZaXYizEqJi2LZb59Rw6cJhWLrTcmsnJVUYuMPDt+cG9viJtP55lbb4WNyfmPLlbhiYIXDjLrv2dp3uxw/Vz6ouL4YZt1Qpt0H6h87s1JX2LF792icR0eMjd3+9raZKYwELzsDS0Wj0xYT9nGR95gK52RsevRW4k3upNvjMopqru38yDZVu7rNuQaMPNrKv0bMeKYNlrf5gcGt5h+bcY1qKIqLgepWOs9ZkkwUF92HzMpqQLOeyZRMw5VPj2zV7oJKN66sCZV9fSsfbo5s5MY0cdF9nvfaiYvO66WUs1rUHvfehO5Nj/aMNw5gSHrOJJcXw6QbyrT7QMNjZ1bqCq/PldJTkZnGY8fNOB1aO0rfKj8hr02MunEAncuS6quvbdWuanOuCZ2PdtPhKDOeaYPlVZqZ19X+7Gzj16hGE3GRmh3a2Yrue/aONRv5M1Fc1N0JG598cvnJGQqXRfmtYpN4CmuTNV153v9+k1/pynRv2qp04za5Zbq6ump1pcY6ux/40ZblU8Ebx3bMkwB1Fd39wJOPLZ+8uJbioqoWN/5gb0PKhubK87ityZiDWjbc17hkWmFdjUI5nux5fnmNNExQMeWGksy6D7Q8dmal3sKA6r5eVWa8/5jyT2I5Gl6l3MawuDT7Vg0dcMPUldUQl1VuzrXB473ywYQWbLhvX9OuVDLlmTZaXqUf0O28RTJ+jWo0FxdJkvj4uLoN07q6N33/0IjCD74apoqL1OZO2HDfvpE43xCqyWVRsSdc96ZHexRnkGm+8szkqbaTLLu6uro2fOXvmszgkppuTNFV/0uRGdvX/HtQ9TTeeo1v0s2UAFT2w03b6+5Nj55a4BpDra24SK1vsg337bThvNmL/CQ+vdS387vt9/jp6tpwV5O/kr+faFHzN2+GtlVvwg2lIht194HGx86c1JvrRt18F7WZqWhYmzY6bTEiLu2+lcdtym/X6kBPxrKPrY64SNIqN+fa4OPjPSq2Qdxw3xOnlMZOG8tp/Jk2Vl75m1+1c7GMXKMaLcUFwZHTfWij7Iadsjds3Lz5wS0/6+lTcVig2eIiSbdWWzxYy2rDxs0Pbjl02n1zy1l14nKriBcOLd8KvPuuTZvvfWR7y8Lpu/J8esmNDqtdXp8aqpPD7D1PPLjpVs91K1ebP93wR9sfubf2V6h6LszVFqs0LPRoeK1ttrhIEqrnfbdT6r5r072PbO/pu5mS5cRFkpBJHNpSf5Pd+8j2HvvNe8x0cbkJx/iU7pHbtwiR5pW7vyYLPjjSdWr77R2DbtX8rVutbdVLkuEbalk2Ru4DHY+dKanz8bkL++p2XUJX49DpqYiuzFA7sOXBzZtuG+iGjZvvfeTxQ3qOX62hUVw2bNy8efPmex95/FDTzVrlidt7fiZLHDW+iiFWT1wkSVrl5lwj6Ko//si99bXXjSY1q74CCKPPtMHyNg5CNp+Wq5y8rmtUQ4W4AACgTGPjsEJ7irVgub00dwUAAID1AogLAOimcVellufCrxx8fO7CoS0PbvxKk6nxAAAA6wgQFwBoINDzABq73Xbo9PXhaazZbgKyidKrP+ACAABwxwHiAgANKCx+7X7goOv2pjt8mlLadUfbW14AAABADyAuANCI1j0rYH4JAADAqgHiAgByAuc1bbqjc8sNAAAAQDMgLgCgBB8f2adqQxUDW24AAAAAmgFxAYCm8GnChE2MAAAAAPMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGMAcQEAAAAAoGO4LS4kSTIMkzQGTdMkSUKozg2VSCTMDRWNRlmWNSsrE0Ot77qyWiiKolBdrWFjBwDA+uC2uDAMw3Fc2RgcxzEMwzBMoVCAUK3J5/MWDLUSBSwWixYMVSqVrJNVLpczKysUimVZ46Gy2SwKxfO8KVkxDLOGjR0AAOuD2+KSTCbL5bLBcDzPox9YxkOVy2WzQpmYVS1UpVIxGKpUKpkVaiWyqlar6zhUKpUyHqpYLKJQgiCYFcpSWRUKhWQymU6nzQqVTCYNxgEAAABx0RkKxKWjQ1lNEUBcAAAAVALiojMUiEtHh7KaIoC4AAAAqATERWcoEJeODmU1RQBxAQAAUAmIi85QIC4dHcpqigDiAgAAoBIQF52hQFw6OpTVFAHEBQAAQCUgLjpDrb64lEqlhYWFa9euffTRRx999NH169dr/dw6EBcMwz6qY3x8vFQqrVxWVlMEEBcAAACVgLjoDLXK4lIqlXw+3+7du7/+9a/ffffdd99995/8yZ9MTU0VCoUVymqVxeUXv/jFZz/72btv8fd///ezs7OlUkkUxZXIymqKAOICAACgEhAXnaFWWVxGRkYef/zxXbt2eb3eWCwWi8USiUS5XEb9+voQl2984xuxW7z00kvf+c53BgcHc7ncSmRlNUUAcQEAAFAJiIvOUKspLgzDnD179oknnpidnUVDLKuQ1eqLy3333Vf7fxcWFl5++eW//du/DYVCK5GV1RQBxAUAAEAlIC46Q62muMzOzh49evSVV15p1qutP3Hhed7hcHzta19bWFhYiayspgggLgAAACoBcdEZajXFxeFw9PT0fPjhh836j/UnLpIkTU5OgrisbVYgLgAAWBAQF52hVlNcnE7n22+/ferUqTtnxEUQhPHx8W9+85s+n28lsrKaIoC4AAAAqATERWeo1RSXubm5X/ziFzt27Gj2l+tPXJLJ5Mcff/zDH/4Qw7CVyMpqigDiAgAAoBIQF52hVlNccrncqVOnHn744StXrqRSKUmSSJK8ceNGMBhEm52sM3HJ5XLHjh374Q9/+OGHH6bT6ZXIymqKAOICAACgEhAXnaFWeTn0wsLCgQMHfvzjH2/btm3Pnj0vvPDCmTNnYrEYKtH6EJe77757z549e/bs2bp16z//8z+/+OKLFEWhEoG4rElWIC4AAFgQEBedoQwpQj4v+f1lmy33wQe5s2erAwPS0pKUy7X+EEmS//RP//TDH/7wr//6r7dt2+ZwONAmLqZlJUmSWYqQy0k+X7m/P/f++7mzZ4XBQSkQaF3A3t7ev67j5ZdfRmMtZmZVF8pqigDiAgAAoBIQF52hdCqCIEj5vORwSLt2Cd/+tvBbvyV+8YviffdJe/ZIw8NSPr82WdVhVBEEQcrlJLtdeuop8VvfEr78ZfGLXxTvv1965hnJ4dBdQBCXNckKxAUAAAsC4qIzlE5FSKWko0elb39b+vznpc9+Vvr0p6VPf1r67GelL3xB+tM/ld55R9LVb1lIXGhaevtt6etflzZsaCzgQw9Jx4+vTVayUFZTBBAXAAAAlYC46AylRxEoSjp7Vvre96TPf1761Kekrq7b//vUp6QvfUn6y7+U+vqkTGZVs1qOIUWIxaQTJ6T775d+/deXlQ4V8Dd/U3r4YWlgoO1LMZOzUgplNUUAcQEAAFAJiIvOUHoUYWJCevxx6fOflz796cZ+vatL+sxnpLvvlrZvl3BcU9SYFLtSubKf2/9G/g1f1VeUipoTq8OQIrhc0j/8g/Rrv9a0gL//+9Lu3VI0uqpZKYWymiKAuAAAAKjktrjQNM1xHG8MjuNomqZpulAoQKgGKlevit/5jnKnjv73679e/dM/zTudadXE0/Ez+TN/U/qbu6t3/1H5j17hXpnNzqr/uByGYaLRaDQaRT2WJrizZ6vf+lbT0nV1SV/4gvDQQ+X5ea1Vl8vlULUXi0Wtn20gn8+bG4phGOOhUAHNDVUqlQyGymazZoWqXcE1bOwAAFgf3BYXkiQZhkkag6ZpkiQhlCK5EyeE//gfG18S1f1P/Oxn+T/4g/CFCwHVjIRGHks99juV30Eh/jL3lyfJk+o/bi7xw4fLv/d7LcRF7O6ufuUrmdFRrVWXSCRQtbMsq/WzzUIZvxlMDxWNRs0qoNVCURSF6moNGzsAANYHIC6rFyp3/Ljw+79vurj8Y+off7vy2yjEn+f+fA3FhTp8uALiYiCU1WwDxAUAAAtyW1wYhikUCmVjFAoFhmGsForjOBSqWCyuYahKb6/47W+3eFUk/vt/L3zve3mnM6MaKkO9Tb39YOLB3+J/67/k/8u/LPyLnbCnUin1ERpgWTYWi8ViMR1BCmfOVL/xjVavij7/efHP/qwyP6+16vL5vFlX0MRQuVwOhSqVSmZlZTwUyoplWbNCmZgVwzBr2NgBALA+gMm5OkPpmZw7Pi499pi0YYOyu3z609Lv/I701FNSKKQ+ZD6ft/lsr/pe3Z/Z/1rqtY9mPnLPuOPxuO7ZlIamwY6NST/+sfTv/l3TAv6H/yDt2iVp/9kNk3PXJCuYnAsAgAUBcdEZSudy6Pffl77zHYXVwl1d0pe+JP3FX0jXr6tfDi2KIoZhbrd7bm4ODeYTBOHxeCYnJ5PJZG1fXU2YsBz6W9+Sfu3XFAqIlkMPDsJy6BahLJUViAsAABYExEVnKJ07prCs+Oqrwte/Lm7YINb2Z/vc56QvflH6sz+Tjh1TvwGdIAjFYnF4eHhqaoqm6VoBcRwfGxvzer3FYlFHf2NUEShKeuUV6WtfW7bD3uc+J3zhC8J/+28ibEDXLpSlsgJxAQDAgoC46Ayle8v/cjqdPHcu8w//wP/X/yp+8Yu3d8R3OqWihi1YSqXSwsKCw+GIRCL15zVWq1WSJEdGRlwuV271xzYEQeI46fp16Z/+SbznHvFLXxK/9KXSt76V3Lo1ee1aqe74oVXNShbKaooA4gIAAKASEBedofSJiyAI2Ww2MjcXGxpKX72aO38+e+5cdXhYCgY1neNTqVRomv7kk0+WlpbQ7ju1rERRLJVK4XB4YGBgfihS6WMAACAASURBVH4+o3EfXnMUIZ2WfL7yjRvZc+dy589n+/qiDge5uKg1GZOzqgtlNUUAcQEAAFAJiIvOUDrERRRFnucpigqFQrFYLJ1O6w6VTqdnZ2eHhoaSyaQgCA1ZIXcJBoNjY2M+ny+tZZzDdEVIJpPZbDYWi+E4nkgkkFrpDgXisppZgbgAAGBBQFx0htJhG9VqNZ/PEwQRCoVYls3n8/pCoYksdrs9FArxPN8sq2q1urCw4HK5fD4fx3Eqg6+EuBSLRYZhCIKIRCL5fH4NZt7IQllNEUBcAAAAVALiojOUDnHheZ5l2WAwSJIkx3H1E1M0xaFpemJiYnR0tDZ60Swrnufn5uYcDoff71c51LES4oKMLRqNhkIhmqZ1VB2Iy5pkBeICAIAFAXHRGUpr7yuKYqFQIEkyGAzSNM3zvD5xqVarMzMzo6OjFEXVRKRFVoVCYXFx8fr16xiGoeGZ1qyQuPA8zzAMhmEEQXAcp7UjBHFZk6xAXAAAsCAgLjpD6Xi/k0wmQ6EQQRDodYk+cYlEIl6vd35+vt5CWmQlCEImk1lcXLTZbDiOF9stXFohcREEIZfLIW9LJpNqFGpFs7KaIoC4AAAAqATERWcoreJSKBTi8TiGYYlEgud5NH9WUyj0EbfbPTU11bB1euuskLtMTU2NjY3hOF4qlVp8ywqJC0qSYZhAIBCLxTiO0zRFF8RlTbICcQEAwIKAuOgMpUlcBEFIpVLhcJggiGw2izonreKC5uQODw+HQiH5XJbWodCAh8fjGR8fJ0myxYDHyolLtVrN5XI4jhMEobUCQVzWJCsQFwAALAiIi85QmvrdYrEYj8fRKmg03CJpFBdBENLpdH9//9zcnHw3FJVZZbNZr9frdDopimrWFa2cuEiSVKlUKIrCMCwejxcKBSOhDGZlNUUAcQEAAFAJiIvOUJrEJZ1Oo+GWZN0RQprEJZfL+Xy+a9euMQwjf8miMitBEBiGGR8fHxgYqA38NLCi4lKtVrPZLBp00dSzgrisSVYgLgAAWBAQF52h1ItLpVJJJBI4jkej0fq5HerFRRCESCQyNDQUCAQUZ6ioz6pcLlMUNTk5abfbFVcmr6i4iKJYLpfj8TiO4/F4vO1M4ZXLymqKAOICAACgEhAXnaFUiosgCPl8PhKJEATBMEz9p9SLSzKZnJ2ddTqdzXZv05QVUgeHwzExMUHTdENPuaLiIkmSKIpouk84HEZb+q7J7jJWUwQQFwAAAJWAuOgMpVJc0KFCoVCIJMmGIw9Viku5XF5cXHS73TiON+vjtWZVLpdJknQ6nTMzMw3vnlZaXKRbC6xwHKcoqlwug7hIIC4AAACqAXHRGUrljNpCoRAOh9GOsQ1reVSKC03TY2NjXq+3RfL6Zt4QBIHGXRRfYK2cuFSr1WQySRAEjuO5XE5NpwjisiZZgbgAAGBBQFx0hlL5UiaZTAaDwUgkksvlGoYW2oqLKIqiKHo8Hq/XG4vFzMqqhiAIOI47nU5kRQ1rnVZOXERR5DgOLbNCxy7qDqU7K6spAogLAACASkBcdIZq292iPf5jsVgwGEwkEsViUau4lMvlaDQ6PDwcCARabzWre1u8YrGI4/jo6Oj4+Hg+n5dWRVykun2EcRxXc+wiiMuaZAXiAgCABQFx0RmqrSJUKpV0Oo3jOI7jimuPW4uLIAjZbHZkZGRqaqptc2/k6EeO44LB4NDQ0OLiYjabXR1xQXOWo9FoMBhkGKbtCQAgLmuSFYgLAAAW5La40DTNcVzZGBzH0TRN03ShUDAYKp/PmxWqlpXxAqrPKpfLxWIxDMOi0Wg+n+d5vllWiqGy2WwgEOjr60OnEqrMqlgsaipO7btmZ2dHRkZ8Ph99C32hFLNSLCAqPoZhkUgkm83K66eeXC5nblYMwxgPhbJiGKZUKpkSypQCZrNZswpYC2ViAdewsQMAYH1wW1xIkmQYJmkMmqZJkoRQLMvGYrFQKITEhWVZTaFYlg0EAkNDQx6PJxqNmpVV6whOp3NoaGhiYoIgCFPqKpFIkCTZrPgMw1AUVaui1l+HQpEkqRhKR1YmFnAV6modhKIoCtXVGjZ2AACsD0BcViQUTdORSCQYDOI4TtO0VnEhSdLr9fb19bXt0TVl1QKWZSmKcrvdN27c8Hg8q9AZsyxL03Q4HMYwjCCIeDzeNhSIS+eGAnEBAMAsbosLwzDGX8oUCgWGYawWiuM4FMr44HktVOusUqlUJBJBq6CLxaLie5AWoRYXF0dHRxcWFlQmbEoB0enNk5OTNpttbm4um83qDlWfVYvXH8ViEU0DCoVCrd9H5PN5VEDj7yxMDJXL5RiGYVnWrFDmZtX67duahGo41RwAAEAHMDlXZ6gWa5ir1SpN0+iFi3wVdI1mk3NTqdTExMTExETDhnVGslJJtVqNx+No3IUgCPVb8ivSdkYtOgGAoiiCIGKxGMdxukNpzcpq02Bhci4AAIBKQFx0hmohLoVCIRqNEgSRSCTKzXeGVRSXarU6Ozvr9XoJgjAxK/WgHfOGhoZcLlc0Gm273qcFamxDFMVMJhOJRMLhcDKZXLUzq62mCCAuAAAAKgFx0RmqmSJUq1WWZXEcj0QimUymRSi5uFSr1UwmMzAwsLCwoHiYou6s1FMqldCMmeHhYa/XG4/HdXelKm2jWCyizehisRjP84qeB+KyJlmBuAAAYEFAXHSGUlQEURRLpRJJkhiGJRKJ1vIhFxeO48bGxjweTyKRUHOCj8qsNIGyYlmWZdmxsTGHw6F7CatK2xBFMZ1Oh8NhHMczmYziH4O4rElWIC4AAFgQEBedoRQVAW06FwqFwuFwJpNp3dw3iAvP8yRJfvLJJ5FIROsLGtPFJZlM8jwfj8cnJyedTmczn1AZqu1naycAxONxxbKDuKxJViAuAABYEBAXnaEUFaFUKlEUFQwG4/F425mt9eIiiiJN016v1+v1ZrNZTcMtbbPSRL0iIJdyu93OMfcUlvESwiIlFVVXoXrbqFQqqVQK7TKcy+Va7DIM4rKaWYG4AABgQUBcdIaSKwLapB9tTJJKpdo6RL24cBzn9/uHhoYYhtEhHyskLuj/xYjoO+dHXriU3H2h+otByRuWVFqVJttA5zoFAgGapuWv2EBc1iQrEBcAACwIiIvOUHJFKBaLNE0Hg0GSJOVHKsqpfykTDoc9Hs/09LS+HmLlxEWSpHimuv9y5sFXqt98Xvrzw9LPrkjlqip30WQb5bqTtOXHLoK4rElWIC4AAFgQEBedoeSKkMvlSJIMhUIsy6r5olpnnM1mvV6v0+lssemL7qy0IlcEIin+rxPF7x0Uvvm89K390t8dk3IlSU1Hpsk2BEEoFApou2H5sYsgLmuSFYgLAAAWBMRFZ6gGRSiXywzDoFXQHMepaehrnfHCwoLH4wkEArq7h5UTF4Zhrg2M/T/P9X7v+fS9+6X/82Bx++lkocgLKgRLk22gzegYhkHrohs23wNxWZOsQFwAALAgIC46QzUoQj6fj0ajoVAokUigybZtQ5VKJYZhCIIYGRlBW+ybnpUOaorAcZzP57t69eq7x0+fujRyxJY/0Ce9fDV9pt+3sLBQKBTUh1LZGQuCwHFcJBIhCKJh1ArEZU2yAnEBAMCCgLjoDFWvCIIgsCxLEEQkElG/JqhUKsViMZfLNTo6Go1G9b0kapGVPtAGdBiGud3uDz/88Pjx45988kk6nc4WqrGMhMVyi4uLg4ODGIbl8/nWOWu1DXRaAkVROI6TJJnP53WHapuV1RQBxAUAAEAlIC46Q9UUAW06h4ZbKIpSv+Mtx3GBQODy5cuBQMDgqUBmiYsoirlczu/3X7169aWXXjpx4sT8/HxDp1UoFKanp4eGhjAMa73fjA7bqJ0AgAZdamIE4rImWYG4AABgQUBcdIaq36cf7UESiUTS6bT6UBRFjY2NDQwM1PfQZmWlO87U1NSRI0f27t07PDzMMIy8HxVFsVKpTExMjI6OBoPBFpnrsw20Fw4adCmVSig+iMuaZAXiAgCABQFx0RkKKYIoijzPx2IxDMPi8biamR+1OIuLi319fUtLS+o/pTIrfVAUdfXq1bfeeuvUqVNut7t1tGw2OzMz43K5MAxr9jf6bEMQhHQ6jQZdah05iMuaZAXiAgCABQFx0RkKdeqVSiWbzaItX9VsOlcjFou53e7R0VGKolbh6McWiKKYz+enp6c//PDDU6dOXblyZWJiQs0+eAzDzM7Ojo2NkSSpWATdtlEsFimKwjAsGo2iQRcQlzXJCsQFAAALAuKiM1TtgCGapgOBQCwWKxQKKt/4FIvF2dlZp9MZCARYljU+o1a3uKADicbGxk6cOPHuu++Ojo7G43GViiAIAk3T6J0RRVHy+S66bQO9fSMIIhQKZbPZSqUC4rImWYG4AABgQUBcdIaqVCqCIOTz+UgkgmGY+uCiKBIE4XK5pqamWJY1+H5HnpX6TxWLRRzHr1y5cujQoRMnTpAkqVURRFFMpVI3btzweDwURTV8xIhtFAqFeDweDAbRfGfUGYO4rHJWIC4AAFgQEBedoSqVCs/zDMOgXerVD7dUKhW73T41NZVIJHS/32mRlZq/F0VREASXy/Xaa6+98cYbExMTpVIJdU5abaNareZyObvdjtyl/p+MiEu5XE6lUoFAIBwOZ7NZjuNAXFY/KxAXAAAsCIiLzlCVSiWfz8disVAoxDBMuVxWIy48z/v9fqfTGQ6Ha53xKotLuVwOh8Nnzpx5++23r1y5srS0VL9NrQ7bEAQhHo+7XC6v18uyrJFQNdC8FnSEAk3TmUwGxGX1swJxAQDAgoC46AyFugeCIMLhcC6XU9OyV6tVhmFu3Ljh9/tzuVz96dBmZdU2FMuybrf7zJkzx48fHxwclM+r1WcbSIbGx8cnJibS6bQpS4EqlQrLsqFQiCTJVCoF4rL6WYG4AABgQW6LC03THMfxxuA4jqZpq4XK5/MoVKFQMCtUMpkkSRLDMDQtt1Qqtf0sy7IzMzM2my0WixWLxZXIqlmoUqnEcVwwGOzv73/vvffeffddr9ebSqV0hGqRA4ZhIyMj4+Pj6OO1UMViUUehisViNpsNh8Po9KJEIqE7VD25XI6maYZhzAplYlbmFlDNPblqobLZLCrgGjZ2AACsD26LC0mSDMMkjUHTNEmSd0IoZC2hUCgajar5IMMwCwsLfX19s7OzaOXOqhWQYZhIJDIzM3Ps2LFDhw69//77gUCgWahEIqE7q3g87vP5rly5Mjk5GYlEKIoiSTIajaI5yDpgWbZWz+FwmCRJ3aFqGCngSocyUlcWD4VuBpIk17CxAwBgfQDioicU2h4tGAziOF6bY9uaUCg0NjY2ODiYSCRQN7BqBQyFQh9//PGePXvefvttl8sVj8db9EMGO2OKohYXFz/++GOPx0MQhPFuLx6P4ziOqtrEzhjEZZVDgbgAAGAWt8WFYZhCoVA2RqFQYBgGjcMbDMVxnFmhzM0KWQKO4wRB0DRdKpXUJDAzM+NwOAiC4Hl+JbJSDIXOFTpz5szrr7/e398fDAYzmUwtAU2hVMLzfD6f9/l8o6Ojk5OT0WgUvWjQEaqWD0VRoVAIx3GKoozfovl8HhXQSFb1oViWNTFU66vTuVnlcjlU7WvY2AEAsD6AybnaKJVKDMPUJl5wHKfmU7FYzOv1zszM1A7fkermrq7E5Fw0s3VgYODs2bMffvihw+FQ+UWmbPXGcdzi4qLT6RwfH08kEkYKiI5dDIfDaCNdvuWxjmqAybnqgcm5AABYEBAXbaCN0TAMw3GcZdm2AdGyXq/XOzk5mUgk6v9phcRFFEU0D/fatWtHjx796KOP5ufn1XeHZu1Rm8lkpqenb9y4MTc3l8/njZwiWSwW0WZ0BEGo3y+nGSAu6gFxAQDAgoC4aCOfz5MkGQgESJJUM9xSLpdJkhwaGgoGg802ljVRXNBKkNnZ2VOnTu3bt89ut9dvrKIGEzfXZxjG6/VevXo1HA4bGSkRBIFlWQzD0Jxig9UF4qIeEBcAACwIiIsGRFFERyoGg8FEIlEqldp+JJfL9ff3z87OptPphqGClRCXRCJx8eLFl1566fjx4yhDreMTJopLsViMRCKjo6M3btyIRCJGAqJ10ehMKDXV3gIQF/WAuAAAYEFAXLSlRNM0hmEYhmUymbateT6fX1pastls8nN8JLPFJRaL2e32np6e9957b3h4OB6Po9dGWkOZe5whWok9OTnpdrtxHNfd/3EcF41GMQwjCCKTyRipMRAX9YC4AABgQUBcNIC6z2AwiDbsb60F1Wo1Go0ODw/7fL5CoSD/A7PEhef5YDB48eLFt95669y5c+Pj40a6B9PPYWZZlqbpqakpr9cbiUT0hSoWixRF4TgeCoUSiUSxWDSYldUUAcQFAABAJSAuahEEIZ1OEwSB1hO1fWGRyWTm5+ftdns+n1ds900Rl2w2Ozs7e+HChSNHjpw8eRLHcYPVZbq4oFDxeHxyctLj8dA0raO8pVIJbUYXCoUikUgmk9E9RRfERT0gLgAAWBAQF7WgtS3obQVN061DVavVYDDodrsxDGvW6BsRF1EUK5VKJpNxu909PT1vvPGGzWZrm5UaVkhcJElKJBIul2t4eFhHcCQuFEWhheiJREL3bF8QF/WAuAAAYEFAXNSSTqcjkQiO4yRJtrWNZDLpdru9Xm+LbzQiLpVKJRaLvffee/v37+/t7UUuZfytk7SS4oLOmLTZbF6vV2sHVnvrxDAM2pA3m80aycpqigDiAgAAoBIQl/ag4Q00xwIdwcOybAtFEARhcnLS6/WSJNnijYZucUmlUiMjI2+99daJEyfGx8cZhuE4zvhbp4asTBcX6dbsZrSprqbz9mqhcrkc2raYYRh9hQVxUQ+ICwAAFgTEpT2iKOZyuXA4TBBE7aShZr1mpVKJx+MOh8Pv97eeQ6pVXERRFATB7/dfuXLl5MmTly5dWlhYQHvJyHfO1c2KioskSYIgEATh8XhmZmZSqZSmUGgbe5qm0aALx3E6OlQQF/WAuAAAYEFAXFRlQtM0OuQvnU63UASkOGNjYxMTE21HFDSJS6VSSSaTk5OT58+ff++99/r6+iiKqg3ndJC4SJJULpfRBKCZmZlmM5dbhMrlctFoNBQKtR73ah3KaooA4gIAAKASEJc2iKJYKBTQWTk0TedyuRaKUCqVIpHIlStXotFo2z5VvbjwPB+Px0dGRl566aV33313bm6uoSCdJS6SJJXLZQzDBgcHfT6fGnepD1UqlRKJBFpeVCwWtfapIC7qAXEBAMCCgLi0AQ11BIPBSCSSy+Va20YikXA4HNPT02pO51EpLoIgLCwsvPvuu/v27UNLcuS9SMeJC/rXcDh8+fLlpaWltocn1IdCw1qRSCQYDOq4piAu6gFxAQDAgoC4tEIUxWKxGIvFanv8t7CNfD7v8/kGBwfT6bSa7qetuAiCkMlkPv7441/96lcffPABOjegYb5ILpejKAodxWyz2ex2+4gMh8PhdrtnZ2cxDKMoKp/Pt0hv1cQFDWUFAoGhoSG/39/aXRpCFYvFRCKBTgDQeuwiiIt6QFwAALAgIC6tqFQq6XQax3EcxzOZTLVabTa2IQhCKBRyu90+nw+NCrQN3lpc8vn83Nzc2bNnT5482dfXFwgEisUix3FocZPP55uYmHA6naOjo+j/Dg0N2e12t9s9LsPr9Xo8Ho/H43K5xsbG0Ee8Xu/c3Bw6LbL++IJVExdJkgRBKBQK8/Pzbrfb7/cr7i+sGKpSqaBDo3AcT6fTmsaZQFzUA+ICAIAFAXFpRaFQoCgqGAyirXJFUWwmLplMZmJiwuPx5HI5lQMAzcQF7TPrdDrPnDnz9ttvDw8PEwRBURSGYTMzMxMTEy6Xy+FwDA4O2my2kZGR8fHxmZmZ+fl5NCyUkoG2bguFQgsLC+Pj4yMjIwMDA4ODgyMjI2NjY16vd2ZmZmlpCe1Pk8lk0LKpVRAXRD6fn52ddblcGIaVy2XF2msIJYpiqVSKxWJoDKmF8TQLZTVFAHEBAABQCYhLU9BZ0JFIJBQKpVIppBeK4iIIgs/n83q9oVBIfXy5uNT64ytXrrz++utHjx5FzrSwsDA0NHT58uXLly87nc75+Xk0TFLr5LTOcREEAZ3+g2HY5OTkjRs3zp07d/36dY/Hs7i4GAqFotFooVAw2F2pH7xJp9MzMzNDQ0MURfE8L3cXeahqtYoGw7SeAADioh4QFwAALAiIS1NKpRLq2utXr8gVQRCEfD4/MDAwPz/f9gCjhvgNoUql0uzs7CuvvPLaa6/19fW53e7e3t6zZ89+8skns7OzDMOUy+VqtSoIgiAI9V21vsm5aGOYarVaLpcLhUIwGHQ4HOfPnz9+/Hhvb+/09LTBcRf14iKKYiaTmZub6+3tRedatw2FRr/Q6UXxeFz9sYsgLuoBcQEAwIKAuDQlm83WNmmtiYJcEYrFosfj8Xq99RurqKFeXKrVKkEQFy5cOHDgwNGjR8+cOdPb2zs6Ojo/Px+JRFiW5TiuhZQYXFUkiiKahpzJZCKRyMzMzOjoqN1uv3bt2sDAgN/vL5VKurd6U2k/1Wo1lUqNj4+Pjo5Go9GGjyiGEkUxmUwSBIEGXTRlZTVFAHEBAABQCYiLAqIoVqtVtOkcSZL1a5sbFIHn+Wg02t/fj+O4+h/9iFpnzDCM0+k8ceLE66+//stf/vLq1asul2txcZEkyVwup6bPMHE5NFqwEwqFQqHQ3Nycy+VCS5MWFxe1dqta5/lWKhWWZcfHxycmJkiSrC94s1Acx0WjUTQHqFKpqJ8TbTVFAHEBAABQyW1xoWma4zjeGBzH0TRtSqh8Pr9WoYrFYm12Szwer/9ULVShUCiVSvF43O12O51OlmV1ZBWLxaampi5duvTGG28cPnz4vffeu379us/nSyaTpVJJRwELhYLWNBrI5XK1UBzHxWKxycnJTz75ZGBgwOPx+P1+NBlWTXr1odQnQJKky+Vyu93RaBStP6+FYhimIVShUEgkEgRBEASRSqXUfFEtVLFYVJ9V61DGqz2bzZqVlZVDaTqgCgAAQJHb4kKSJMMwSWPQNE2SZKeHYlmWJMlgMIimqTYLRVHUzMzMJ598gjbVbROUSqbCqVQwlQqnknSSYRgcx9FZiU8//fRLL7109uzZ6elpmqbRop4VLWALEolEQyiGYWKxmMfjuXTp0oULF+x2u9/vj0QibVNFoaLRqNYSLS4ujoyM2O32SCSC0qhlJQ8Vj8dxHEc7BKqpPXkBdWN6KB111SmhKIpCdbWGjR0AAOsDEBcF0F4pwWAwHA4nEolmoXw+n8PhcLlcavrL9FQ6dzrHHeByp3OpYCoUCp07d27Xrl07duw4efLkxMSEke5hRcWl9hWxWGxmZubjjz9+5513rl27trCwQFFU21A6ysWyrN/vHxgYuHHjRiQSSbYUF5qm0S66aGk0iIs1Q4G4AABgFrfFBY14V4xRKBQYhkFjy2aFWuWs0BSBUCiE3j7wPK8YimVZtAUcOuqvNdVTVfFRUfyqKP6BKH5VZH/Ann7y9HPPPXfkyBGbzYbjeC6X0188U6ud4zgUqlQqNfwTz/P5fB5tWet0Oq9duzY4OIhhGM/z5XJZUyg1aUQiEbvdPj4+jo6IahaqXC6jOcVo3KttDeTzeXT5dGSlGIphmIabRHco9MJxXWZVu4Jr2NgBALA+gMm5jaCZK4FAgKIo+XzbWii/34/mfLSZt1iWpLAk/Xep+tvVymcqwqcFqUsq/EZh+K+Gz7963uVyxeNxEwtYWfmzikRRLJfLiURifn4eLT6ampqq7XOjKVRreJ4Ph8MOh2Nubi4ej7cIVSqVGIYJBALRaLTtkY0wOVc9MDkXAAALAuKyDEEQstksQRChUEhxL3me5xmGiUQio6Ojs7Oz7Vfh5iWpXyp+o4j9Ljb7n2bJ3ybFT4lSl5T+fjp9MW2WbaymuNQol8vRaHRsbKyvr298fDwSiTScN2RQXNDaLr/f73a7Z2Zm0DsjxVDVajWXy+E4jgbJWl9lEBf1gLgAAGBBQFyWgRYDB4NBkiQVT+/jeT4Wi3m93tHRUTUv7IWkkDqWmvve3PG/Pn7ofx66+r2rlc9UpC5J+iup/GG5o8Wl9veLi4u9vb02m83v9+dyudoHTTn2qFqtorm6Ho8HrXlW/LNyuYx2C4zH461PAABxUQ+ICwAAFgTEZRn5fD4ajWIYxjCMYh9ZKBRCodClS5daHwpYIxVLnTx88uf/3893/svOZ5949uTDJ0ufK4mfEqX/KfFDptnGGooL2n43k8m4XK5Lly7ZbDY06UdHqBYpzc/P9/X1TU5ONqvzarWayWTQoEs6nW6xoQuIi3pAXAAAsCAgLsu+kWGYUCgUDoc5jlPsQhiGcbvdg4ODNE23nUvhdrsPHji4Y/uOHU/tOPSjQzf++Eb8N+Pip0Xp/5CkX0olutXp0PoKuPrigkCv2DAMGxkZuXDhwuTkZCqVQj2ocXERBCGZTKIFTX6/v+GFFALNvInH421PAABxUQ+ICwAAFgTE5TZouAXH8UQiUVHahpXn+UAgYLPZFhYWFLvPGpFI5Ny5c88999z27du3b9++f/f+a7uu0X9PS/+XJP2/kvRLSQo0PR3aSAHXSlwQxWKRJEmPxzMwMOB0OpeWltBiclM640gk4vF4HA4HhmGK4y6iKKZSKYIgwuFwKpVC/0X+ZyAu6gFxAQDAgoC43EQQBJZl0cE32WxWsc9LJBJer9dut7eYbFEqlRYWFo4ePbpnz55t27Zt37794MGDNpuN8TOSR5I+liSPJOVv/uU6Exfp1rnT8/PzAwMDg4ODU1NTsVjM+BVE64ZisdjExAQ6hVvxPMtisRiLxXAcpyiqXC6DuBgMBeICAIAFAXGRpFvdLRpuoSiK53l5n1cul+fm5hwOMm9ydAAAIABJREFUx9LSUrMZMPl8fmpq6pVXXkEDLTt27Hj11VfRTifyP16X4lKDJMmBgYELFy5MTU1lMhmDPR/KimXZTCbj9XqdTic6iLHhMlWr1WQySRAE2hpH8UtBXNQD4gIAgAUBcZEkSRIEofaWIZ1OK/5NOBx2uVxTU1NoF1G5IoiiaLfb9+zZ89RTT6Gxlp6enkQiUTtZuoH1LS6iKCYSidHR0Xfeecfj8TSrVa1ZVSqVTCYzPT09MDDAMIw8SXS+UigUQu/7moWymiKAuAAAAKgExEUSRREtcm62mBb9gdPpnJycrJ0A0NAp5vP5kydPotdD27Zt+8lPfvLBBx9Eo9EWJrG+xUWSJI7jwuHwxMTEtWvXRkZGIpGImtOb22ZVrVYZhpmamrLZbHJ3QbcNjuPNBl1AXNQD4gIAgAUBcZGq1Wo2m63t8S/vOXieDwaDTqcTx/Fa+1tTBJ7nMQx766239u7du337dmQt58+fb7vLy7oXFzQxJR6P+/1+h8PhcDgCgYDirGetWZXLZZqm3W631+ttmG8kiiKaZB0MBtG294qhrKYIIC4AAAAqAXGRSqUSTdPBYDAWi8k3nUNrce12u8/ny2Qy9YqA5vO6XK4jR47s3r0bTWp59tlnP/zwQzVnstwJ4lKrdoIgnE7n0NDQ4uJiNpvV2hHKs6pUKgzDOJ3OqampRCJRny3a3RjtIpjP5xsuKIiLekBcAACwIHe6uAiCkM/nw+EwhmHyP0A/3/1+v81mQxu31EIVCoVYLGaz2Q4cOIBeD23fvn3fvn0XL15UaQ93jrigUCzLut3u8+fPLywspNNpTfEVsxJFkSRJp9M5MTGB5v8iR0EnAKBzG1iWbbimIC7qAXEBAMCC3OniUvt1jjada2igRVGMRCL9/f04jqP1t/WHLPb09DzzzDM7duxA4rJv375PPvlEfcdzp4mLKIocxy0uLp4/f35sbIxlWeNZ1dzF4XCUSqXa4Ao6BhLDsFgsls/n5aGspgggLgAAACq508UFLULBMIymafl8CJZlp6enR0dHa05TLBZxHL948eIvfvGLl19++ac//Smylv3799tsNrTvmUruNHGRbi07x3F8cHDQ4XDQNG08K3SI9NjYmNvtrr0YQvOW0BTd2hEE9aGspgggLgAAACq5o8WlUqkkk0m0Crr+dMDav/p8PpfLFQ6HUcPNcdzU1NTJkyd7enpee+21Z599dtu2bTt27HjppZdu3LihZl5LPXeguNT+ezAYdDgcw8PD0WhUzfVtnVWhUCAIYmRkZG5uDp3XXTsBAMfxhpViIC7qAXEBAMCC3NHiguapoNNt5Buton1yp6am0DuIRCLhdrvPnDnz+uuv9/T0IGvZtWvXwYMHh4eHs9ms1qzuWHGRbi3FGhgYsNvtsVhMcRtcTVkVi8VgMDgyMoJOqEb/MZPJhMNhdAJAresFcVEPiAsAABbkzhUXdLQN6tgazhMWRbFSqUxMTExMTKBuNZFI9PX1HTly5OjRo5cvX961axeajfvCCy8MDQ3p62zuZHGRJKlarVIU1dvb63A42o67qMlKEIT5+fnR0VGfz4dMqFQqoRMA4vF4bQYMiIt6QFwAALAgd6i4iKKIerVQKBSLxRoOE65UKtFodGhoaGlpKZ/P+3y+AwcOHD582OFw2O12ZC3btm3bu3fvxYsXdfc0d7i4SJJUrVYzmczVq1cHBgbC4bDxrKrV6tzcnN1un5+fR/8lnU6Hw2GCIGq9L4iLekBcAACwIHeouAiCgN4jEASRTCbr22W0BHpoaGh2dnZmZubKlSuvvvrqpUuXFhcX+/v7f/7znyNrefrpp69evappaUwDIC6SJFWr1Xg8Pjw8bLPZAoGA8axyudzi4iI6Uorn+drka/Q2UAJx0QKICwAAFuROFBc0c5OiqFAoFI1GOY6r/WWlKmVyhWAw2NfX19vbe+bMmdOnT1+/fj0cDg8MDBw8eBC9Idq9e/fly5cpijKSFYgLolqtRiIRl8s1ODjY9kDKtlmJophOpxcWFoaGhnAcz2az6BQqgiByuVylUgFxUQ+ICwAAFuS2uNA0nc/nS8bI5/M0TdM0zXGcwVAcx5kVqpZVoVAolUqFQiGVSuE4jo7iq5V6nuSvzpTfG0r1XJx6+50TPb/81cmTJ4eHh2OxmNvt3r9/Pxpr2b1798mTJ8PhsMGscrmcWQWshUIFtFSoRCJRLBZb/2VtWVBfX9/i4mIqlWr4iKasCoVCIpFwuVzokAGKokiSDAaD8Xg8m81ms1mzCohCMQxjYqi2dbX6oWiaNh4qk8mgUGvY2AEAsD64LS4kSTIMkzQGTdMkSVo5FMuyDMOQJBkIBNC0zWQyySaTsUTqwMfFh1+v3r+/9JfP4//rJ6+eev/83NxcNBr1eDz1pye++eaboVDIsgU0GCqRSJgbKhqNovO0W8MwTCgUunLlSm9v7/T0dCwWU8xKTahkMsmybCwWGxoaGh4enp+fD4fDwWAwFApRFIU8pqPrqhND1ap9DRs7AADWB3eiuFAURRBEIBCIRCLotGeKTo0sZP/vnsq39kvffF564EBl7/vxyaUEy7JOpxOtfEb88pe/xHHcygU0GGoNO2NkG1evXr106ZLX661PQKu4oGgkSdrt9sHBwcXFRRzH0elF8Xh8HdRVx4UCcQEAwCxuiwsa8a4Yo1AoMAxj2VDFYrFYLNI0jWEYjuPpdLpUKlUqlXyxMh2p/vi96v0vit98XnrwkPjL4TKZLDscjoMHD9Y29T927Nj8/DwKhT5oBI7jalmZVUATs1r9UOVymef5RCIxMjLS398/Pz9f+6d8Pq8jq1KpRFHUxMSE3W73+/2BQACpj1kFrGXF87zVQrEsa2KocrlsMFQul0MFXMPGDgCA9cEdNzm3tsyEoqjSrb09KoJIZ6svXoj9jyOpLUeFvZelaVJaDBDHjh1D1vLUU0+999576GRjFKpi3jRY46E6enJuA4IgxGIxl8t148YNgiDQXF3dWVUqFYqixsfHh4eH5+bmgsFgIpGgadpq02Bhci4AAIBK7ixxKZVKaI0JjuOZTKbWSVSrVYZhLg9Mv3OdfN9bHQuJ2Tx/ubd3375927Zt27lz5+HDh/1+PxoSAHFZ6VCCIESj0ZGREZvNFo1G0exO3Vmhvf+Hh4edTufs7CxGYCRFWk0RQFwAAABUcmeJSy6Xi8fjGIah7hANt6BTi71e7+TkJFr1wPP84uLiiy++iBY///znP5+enkbn3YC4rE4otK/u5cuXR0ZGYrEYx3FGskLjLtevX7/mvnYFu3KVvjqeGc9WsqIktv9wc0BctIYCcQEAwDh3lriwLBuJRAiCqG/WeZ4nSfLy5cskSaKOP5FIPPPMM9u3b0fb454+fZrneWQ5IC6rFqpSqSSTyYsXL46OjkajUYNZVavVcDi8Nbj1P6f/828Iv/HHlT92VB0FqdD+k80BcdEaCsQFAADj3CniwrIsTdPouGCSJDmOqx1OxDCM0+mcmprK5XKiKPr9/kOHDiFr2bFjx9GjR2marv0xiMuqhUInRoXD4Rs3bgwPD+M4biQrQRIm+ImHuYc/V/3cZ6TPfF74/O7qbp/k0xcNAeKiNRSICwAAxrmDxCUej6MdVBmGqXUP+Xze7/fb7XaWZavV6uzs7FtvvYWsZdu2bb/61a/8fn9DKBCX1QzF87zf7x8cHBwcHAyHw4r76qpBkASv5P0r4a/+rfRvu6SufyP+m/9d+d8zwozuxCQQF+2hQFwAADDOnSIuDMNEIhE0uyWXy6H/LghCOBz2er2zs7PVajWdTp85c6ZmLW+++ebCwoI8FIjLKocqFApzc3NXr151OBz6x28kkZCI3cLueyr3/G7ld/+o9EdvcW+FK61OdmwLiIvWUCAuAAAY544Ql2KxiE4mCoVCNE3XfrXn8/nJycmxsbFsNitJksvlevnll2sTcjEMk4cCcVmTUKlUyuv1njlzZn5+Hr3R0xdnUpp8sfjiP2b/8YXEC7P0bKEEc1xaAeICAIAFuSPEheO4SCSCtsqt7/YWFxe9Xm9NUI4cOYKGW5577rnaDiINgLisSahisRiNRsfHx8+fP7+wsKD7lhAlMZPPEFHCH/QTYSKXyxnJDcRFaygQFwAAjLP+xUUUxWw2i3Z8j8fjaBW0IAiZTGZkZGR+fp7juFQqdeTIkZ/85CdouOXAgQP5fF7xZz2Iy1qFYlkWuYvNZpubm9Mds1gsJhKJUCiEYRg6PlB3ViAuWkOBuAAAYJz1Ly6VSoVlWQzDMAyrde2lUmlqasrj8cRisUgkcubMmdq+/i+//PLExESz/gPEZQ1Dod36vV7vyMhIIBDQ98KoVCrVJjyRJJnNZnW/eAJx0RoKxAUAAOOsf3EpFouxWCwQCBAEgd4TlctliqJsNhv6zT0wMLBz5070kuill14aHR1tEQ3EZc1DJRIJt9s9MDBA07SO8qLBm0QiEQ6HcRxnGEb3DQbiojUUiAsAAMZZ5+KC3hOFw+FgMBiNRovFoiiKqVRqYmJidHSUYZjZ2dmenh401vKTn/xkaGiodUAQlzUPJYpiJBIZHBwcGRnR0T3XQtE0jTb1qa0y0wqIi9ZQIC4AABhnnYsLOh8YwzC0nqhUKpXL5VAodO3aNbSL7okTJ9BYy1NPPXXkyBH5+ucGQFysEKpSqUSj0bNnz05PT2cyGX2hMpkMSZJo0EXf2yIQF62hQFwAADDOOheXbDZLkmQoFIpEIizLlsvlWCw2MTExOTnJ8/zZs2d/+tOfoh1y//Vf/3V6errtVE0QF4uEKhQKwWDw6tWrCwsLmibYolCpVKpYLDIMgwZd0FCc1qxAXLSGAnEBAMA461ZcRFGsVqvodUAkEonH4+hH9uzsrMvlikQiV69efe6559BLomeeecbtdqt5ZQDiYpFQgiAUi8Xx8fHh4WF0cLemUKlUqlwuI6/VfZgAiIvWUCAuAAAYZz2LC8dxqFuKx+M0TSeTyUAg4Ha7vV7v6Ojo008/jazl2Wef7e3tVfktIC6WCpVKpZxO5/DwcCQS0RQKKUKpVKJpOhQK1Z8Wrh4QF62hQFwAADDO+hQXNNySTCbRcEsymWRZlqIoh8MxNTXl9XpfeOGF2oTcs2fPqo8M4mK1UCRJjo6ODg4O5nI5Nf1rvbhUq9VMJoPmbqMxGE1ZgbhoDQXiAgCAcdatuJRKJZIkMQyjKCqXy1EUhV4rhMPhiYmJ2oFER44cmZ2dVR8ZxMVqoURRJAji+vXrIyMjHMepDIUUQRTFQqFAUVQwGKQoqlQqacoKxEVrKBAXAACMsz7FpVKppFIpDMPC4XAmk+E4LhQKXblyZWFhYWBgYP/+/chaduzY8fHHHxcKGg6sAXGxYKhisRgMBi9cuLCwsJDP59WEqilCpVJJp9M4jhMEkclkNKUK4qI1FIgLAADGWZ/iglZBo5/RhUKBZVmPx3Pjxo2+vr5XX3112y3OnTsXjUY1RQZxsWAoURRzudzMzEx/f//S0lLrRUYN4iKKIjoICcOwRCKhadAFxEVrKBAXAACMc1tcaJrO5/O8MTiOo2mapmmO4wyGyufz+kKhJhIdTsSybDabXVpa6u/vn5mZeeutt3bu3ImsZffu3T6fT3dWhUJB62cbyOVypocyXu0rkdUqhCqVSplMZmhoyG63BwKBFt+YzWZRqGKxiP5LsVhEU3TD4TDLsqVSSWVWKBTDMMYLuBKhagW0QqhMJoOqfQ0bOwAA1ge3xYUkSYZhksagaZokybUNlUgk0FnQBEGgcRen09nf3z8xMXHgwAFkLbt27XrjjTcWFhZWLatOCZVIJMwNFY1GWZY1K6vWoTAM6+vr6+/vxzCs2V/KC4hOAAiFQsFgMBwOowVomrKyYF1ZLRRFUaiu1rCxAwBgfbAOxSUej6PhFpIkKYryeDw2m83pdD799NO1Obn79+9v2wuam1WnhLJyZ6zmks3Pz1+/fv3atWsMwyj+sWIBWZZFGxWixfNas7JgXVktFIgLAABmcVtc0DB1xRhoN1I0trwmoYrFIkVRaK5lNpslCMLr9Q4PD1+4cGHXrl3IWl5//fVwOMzzvI6sCoWCWQWshSqVSgZDcRxn5VD6qlpfKI7jfD5ff3//1NRULpdTHyqTyUQiERzHE4lEsVgsl8smZqUyFMuyxkPl83lzQyWTSbNCMQyzho0dAADrg/U2OTefz0ejURzHKYrK5/Pj4+NTU1NOp/PFF19Ewy179uw5f/687qx4mJxr+VCZTGZubq63tzcSifA8rxhKPg22UqnQNE0QBEmSHMepmY4Kk3O1hkrC5FwAAAyzrsSlWq2yLEsQRDgcTqVSOI6Pjo6OjY2dPHmytv757bffnpmZ0Z0ViIv1Q4miyLKszWYbHR2lKKqh020mLtKtk63QsYuVSqXtRrogLlpDgbgAAGCc9SMutXWtoVAoHo+zLGu326emps6cOVNb/3zgwIGJiQkjWYG4dEQoNHxy5cqVqampbDZbryAtxKVUKiUSCQzDVB67COKiNRSICwAAxlk/4iIIAtpJLBwOx+PxpaWlvr4+l8t15MiRmrjMzs7qOAS4HhCXTgklCML8/DxaBl/f77YQF7QfDDoBQM2NB+KiNRSICwAAxlkn4iKKIs/zsVgMw7BYLBYKhQYHB4PB4PHjx3fv3r1t27bt27c/99xzgUDAYFYgLh0UqlAouN1uu91OEERDqGaKgAZdgsFgPB5vO+gC4qI1FIgLAADGWSfiUq1Ws9ksWkxEEMTMzMzAwMC5c+eeffZZNNayd+9em83GsqzBrEBcOitULBYbGxuz2+217fxbi0vtRsJxPJ1Ot65PEBetoUBcAAAwzjoRl9oP5UgkMj8/73a7Jycnf/rTnyJrefbZZz/88MNEImFiAUFcOiJUpVLBMOzGjRvj4+Mcx6HTN1soAvqDeDyOjudsfXoAiIvWUCAuAAAYZz2IiyiK+Xw+EokEg8FQKORyuUZHR8fHx9FLol27dp06dcqsrEBcOi4Ux3GLi4vnzp1Dm/e0FhdJkqrVKposFYlEMplMi7dFIC5aQ4G4AABgnPUgLjzPMwyD9mt3uVxer3dwcLC2Se6rr77qcrlAXLRmtW7ERRTFbDY7Ojra19dHkmRbcUHzpUiSxDAsHo+3OHYRxEVrKBAXAACMsx7EheO4aDS6tLS0sLAwPDz80UcfPf/887WVRJcvX06lUiAuWrNaN+IiSVKlUkmn0319fW63myTJtoogCEIymUSb0WUymWZ/BuKiNRSICwAAxul4calUKizL4ji+tLQ0NDQ0NTX1wQcfIGV56qmnPvjgA7R9KoiL1qzW3DbMDSUIwtLS0uDgoMfjiUajbRWB47hYLEYQRCKRaFarIC5aQ4G4AABgnI4XF9TBLC0tzczM9Pf3Dw8Pv/7662j9886dOxcXF83NCsSlQ0OhF0ATExMDAwOTk5Nt6woJMUEQkUjk/2/vToPjvAs7jouQUDohGY5Cp5CBZEj6opTplKGdQm/amfZNOaalw3QKPQaalIYBOmDLjoMdSOIkJE7tJG7AiePghNiR7cixLevW6r5v67CO3X1293lWz7Xnc+z5/PviT1eKLu8++8jPod9neFNb+umvxUjfrh49qyjKpt+5ES6VTiFcAKB67g4XwzDoU/ozMzNdXV0DAwPPPfccfbpl//79L7zwAn01WoSLiVM5oTYsn5JleXBwsLGxMRQK3fAfA33dq2AwKIripg8swqXSKYQLAFTPxeFC/3/olZWVhYWFkZGRixcvHj9+/MCBA3v27Nm7d+9TTz1Ff/3V2lMhXFw9ZRhGMBhsaWlpa2tLpVLbv3E2mxVFkV70rWnaxm/eCJdKpxAuAFA9F4dLsVhMpVLhcHhsbKynp2dsbOzRRx8tvZjisWPHSjfhQLiYOJVzasPaqWQyOT09XVdXt7i4qGnaNm9Jf82e/nqRLMsbX2ga4VLpFMIFAKrn1nChT7fwPD87O9vf39/S0lJXV/fQQw/Ra3KPHj06PT1d+h6AcDFxKkfVhoVTuq6HQqGurq729naWZbf/lpzJZOiTLhzHqaq67o0RLpVOIVwAoHpuDZdCoaAoSjAYHBgY6O/v7+joOHToUOkloPv7+3foVAgXD0yJohgMBpubmycmJuLx+DZvvPYVAOLx+Lp/PwiXSqcQLgBQPbeGSzabFQRhZmamvb19cHCwpaWl9CvQra2tO3cqhItnpq5du9bV1TU7O7v9vwp6HRW9GZ2maWtvpItwqXQK4QIA1XNluBiGoWkafQ2agYGBc+fO7du3j1bL3r17fT7fzp0K4eKNqXg8rut6X19fR0cH/dWzrRQKhWQySV+/M5FIIFyqmUK4AED1XBkuuVyO5/nJyckrV67U19cfOXKkdJ/c7u7ujb8tgnAxcSoH1oa14ZLP51dWVgYGBnw+Xzab3ep7s2EY9C2DwSB90qX0VwiXSqcQLgBQPfeFS47klrXlzkBna2drX1/fyy+/fODAAfpiiidPntz0/3tGuJg4lQNrw9pwKRQK2Wx2cXHR5/PNzMxs85pEhmHE43F6M7pEIkH/hCBcKp9CuABA9VbDRRAEVVUz1VEURRAEQRAURbF8SstoUkaqy9btU/fdH73/wOiBps6mp376FP0J0aFDh0ZHR+Px+DZT1X+C6XQaUxVNiaKoaZpzplKp1NopQRDGx8cvX74cDofT6fRW75VMJunN6DiOUxRF1/WNUxaeqvopSZIsnKKfbzWSyST9d2XjFzsA8IbVcGFZVpKkWHVEUWRZdoemVmIr3cnuz+c+f6tx623F236P/73DRw/v37+f3if32LFj0Wj05p/KY1OCIFg7xXGcLMtWncrCKfoJyrLs9/svXrzY09ND79ey6XvJssyybDAYpD8wom/m5MfKaVM8z9PHysYvdgDgDW4Kl2A8+Lj6+D35e2pITQ2puUe8Z/+h/fSa3GeeeWZgYEAQhJt/Ko9NOfmb8U6EC/2T+fn5urq60dHRlZWVrd6R5/lQKBQIBCKRCMKlUggXALDKarjQ55YL1dE0TZIk+txylVO6rq+bSuQTb2bf/J3879SQmnsW7vnWM9/as3cPdfLkyXQ6nc/nd/pUpalMJuPJKVVVrT0Vveesc06lKAqdKp0ql8upqjowMNDZ2bm0tLTVO2YyGfo65AzDJJNJ+l7WfoKyLOdyuSqn6CfozClJkmz8YgcA3uCmi3OzxeycMncocegr6lf+ZfRf6KUte/bseemllxYXF2/OqXBxrjem1l0GaxiGKIo9PT2Dg4OxLS4gLb0CgN/vp92Di3MrndrqsQUAKJ+bwiWfz4uiOBAZOD19+pk3nqG//1xbW9vR0XHTToVw8cbUxkQoFovXr1/v6ekZHx/P5XJr79dSks1mJUkKBAL0El1VVREuFU0hXACgeq4Jl2KxqKpqOByen59/44036NMte/fuffbZZycmJm7aqRAu3pjaNBFUVZ2cnGxsbOR5ftNHslgsKooSDoeDwaAsy6lUCuFS0RTCBQCq55pwyeVysiwHAoGOjo5jx46VbvB//fr1m3kqhIs3prZKhJWVlb6+voaGho23MaRyuZwgCPRJl3g8jnCpaArhAgDVc0e4GIah63o0GvX7/a+88gp9Fei9e/fu27dvYWHhZp4K4eKNqa0SIZvNhkKht95669q1a5u2S7FYTKfToVCIYRie5yVJQriUP4VwAYDquSNc8vl8IpFYWlrq6el5+umnabUcOnSou7s7mUzezFMhXLwxtVUi0CtwJycnm5ubg8HgxrcpvQIAwzAsywqCgHApfwrhAgDVc0e4aJpGXwv61KlTBw8epNVSV1eXzWZv8qkQLt6Y2iYRCoVCMplsaWkZHR2VZXnjGxiGkUwmw+FwKBRiWRbhUv4UwgUAqueCcKH3C19eXu7s7PzRj35En245fvw4x3Flfj1FuJg4lQNr4+aECyHEMIyFhYXOzs5r165t+uLk9AeXgUAgHA6LomhhbSBcAAC254Jwoa801N7eXrq0Ze/evadPn7blVAgXb0zdMBHy+XxPT4/P54tGo5u+QTweZxgmGAxGo9HqH3aECwBAmVwQLvF4nGXZjo6O2tpaeuOWV199lWEYW06FcPHG1A0TwTCMSCTS29vb3d296aOqqmokEvH7/eFwOLP1K0uXCeECAFAmp4eLJEk8z3d0dBw9erR0x7mmpqYyr26x/FQIF29MlZMIuq7Pzs62tbX5/f6N/3IKhYIoisFgMBAIJJPJKh95hAsAQJkcHS6yLPM8H4lE1t5x7qWXXirnV6B36FQIF29MlZkIoigODw+3tLRs+qHj8XgoFPL7/YIgVPmkC8IFAKBMzg0Xent1lmUnJiZefvnlUrjMzc3ZeyqEiwemykyEfD4fiUTOnz8/Pz+vKMq6v02n0xzH+f3+SCSiKEo1390RLgAAZXJuuGQyGUEQGIY5duwYrZba2tra2trtX09xp0+FcPHGVPmJQF8HoKGhgWGYdS9gpKoqz/MMw5RedtH0qRAuAABlcm646LrOsmwgECjd4P8nP/nJ0tKSrus2ngrh4o2p8hOhUCikUqnm5uaRkRFRFNf+la7r9ElB+rtFG5+SKR/CBQCgTM4NF0VRFhYWXnvttUceeYS+LNETTzyhqqq9p0K4eGOqokQoFAqLi4s+n296enrtPyEaLjzPh8NhhmFkWTb9DwzhAgBQJoeGS6FQiMfjU1NTpTvOPf74442NjeaejUe4mDiVA2vDrnAhhGiaNjg42Nvby7Js6Q91XZdlmV5CzjAMx3Gmn3RBuAAAlMmh4ZLJZBiGaW9vP3DgwN69ex966KE333zT9lMRhItXpkwkQjgc7u/v7+/vz2az9GIXmgj0W3skEgmHw7FYbN11MGVCuAAAlMmh4aIois/nK90n95lnnunt7bX9VATh4pUpE4lQLBZnZ2cvX77MMAyc1iPdAAAgAElEQVT9h1RKBF3X6YXkHMdlMhkT7YJwAQAokxPDJZvNzs/P//KXvyz9MtGlS5equfIR4WLiVA6sDXvDhRAiSdLo6OiVK1cSiQR9xaLSFH3SJRQKmVtGuAAAlMmJ4ZJOp5uamh5//PHSrXJ9Pp/tp1o3hXBx9ZS5RMjlcpFI5MqVKzMzM6lUam0iaJq2srISCAToky6VfqdHuAAAlGk1XARBUBQlUx36goiCIKiqam6B3hvjzJkzpTvOnThxYmZmxpJTVf8JptPpKj9Bt0xpmlblVCqVEgRBFMXqT2X5lOnHKh6Pj4+Pt7S0LC0txeNxeipN01RVFUUxFAoFAgFZlisdL32C1T/syWRSEARJknRdd9qUIAg2frEDAG9YDReWZSVJilVHFEWWZauZEgRhcnLyxIkTtFoeeeSR8fFx20+1e6YEQbB2iuM4WZatOpWFU+Y+QXrjlkuXLvX09CwtLa2d4nmevgJAJBIRRbGio1r+WDltiud5+ljZ+MUOALxhNVw4jqv+e5UkSRzHmZ6SZZnjuNKtcg8cOHD27NnFxcUqTyWKYjWn2qEpQRAceKrSVPXfq+iUVbVh7VQ1j5Usy5OTk1evXu3v76ff1+kUzcfl5eVgMFjpA2j5J2jtY2XhlI1f7ADAG1bDRZZlXdcL1Snd2cLEVD6fj8ViZ86c+fGPf0yfbnn00UevX7+eTqetOlUmk6lyStM0q6Z24lTZbNY5U6qqOvZU9A795hby+byqqgMDA52dnQsLC6VT0T+PRCLBYJD+rK3SU9Fb2Jk7VYmiKFY9VnQqFotZeCobv9gBgDc46OLcQqEQDoefeOKJffv27d27d//+/c8++yzLsg65ZHjdFC7OdfVU9ZfBhkKhrq4un88ny3Lp2tV8Pi/LciAQYFk2lUqV/3vRuDgXAKBMDgoXSZJaWloeeugh+nTLU0891djYKAgCwsWWUzmwNhwVLrquj42NNTQ0LCwslG7oXCwW6ZMuDMNIklT+vzeECwBAmZwSLoZhTE1NHT58mFbLwYMHL1y4YHltIFzKP5UDa8NR4UIICYfDPp+vpaWF3taFEGIYRrFYlCSJYRiWZdPpdJlTCBcAgDI5JVyy2Wxvb2/pVrmvvvrq8vIywsXGUzmwNpwWLul0enZ29vTp0wzDrH0VLUVR6M3oZFku86dFCBcAgDI5JVxCodC5c+dKd5xrbGxUFAXhYuOpHFgbTgsXTdNCoVBnZ6fP51tZWSn9eS6Xo/d0YVlW07RyvusjXAAAyuSIcMnn8z6f74knnqDhsn//fp/Pl8vlEC42nsqBteG0cKEvUbS8vHz16tWZmZnSD4YMw0ilUizLMgxT5gdCuAAAlMkR4TI9PX38+PHSrXJfffXVpaUlhIu9p3JgbTgwXOhvVg8PD/f29gYCgdIPhnRdF0WR3tAlU8YrACBcAADKZH+4GIbx8ssv01+Brq2t3b9//+LiIiEE4WLvqRxYGw4MF3oqURQ7OzuHh4dVVaV/VSwWk8kkvZFuIpG44X8vCBcAgDLZHC6GYWQymRdeeKH0QtAHDx5cWloiCBe7T+XA2nBmuNBEuHbtWnd39/z8/Nq/FQTB7/fzPJ/JZMqcQrgAAGzP5nDJZDKTk5NPPfUU/SHRY489try8TL/KI1zsPZUDa8PJ4ZJMJkdHR1taWtLpNP02n8/nk8kkwzChUCiZTG7/4RAuAABlsjNcDMOIx+M/+9nPDhw4QMPl6aefLj3ZjnCx91QOrA0nh0uhUPD7/Z2dnZOTk7S8DcPQdT0ajQYCAUEQdF0vZwrhAgCwPTvDJZFI9PX1Pfzww7RaDh8+3NbWVnpHhIu9p3JgbTg5XAghyWTy2rVrV65c4Xme/hdRKBTi8TjDMJFIJJlMbvPtH+ECAFAmO8NlYWHh6NGjtbW19OqW119/fe3fIlzsPZUDa8Ph4WIYhiiKDQ0NExMTiUSCEFIsFnVdL73s4tqb1G01hXABANieneEyOjpa+hXoffv2nTlzZu3fIlzsPZUDa8Ph4ULHg8FgfX293+8vvQiALMuhUCgSiaRSqRtOIVwAALZnW7jkcrm19/inr0y07g0QLjaeyoG14fxwMQxD07T29vbh4WGe5+mfqKrKsmwwGBRFsVAobPoiAAgXAIAy2RYuo6OjR48epdVy5MiR8fHxdW+AcLH3VA6sDeeHCyGkWCwGg0Gfzzc1NZXL5QzDKBQKoijSl11UVXXTCEC4AACUyZ5wKRQK9fX1padbrly5IgjCurdBuNh7KgfWhivChf750NBQX18fx3H0T0qvACDLcj6f3/ikC8IFAKBM9oRLKBR65ZVXSuFy/fr1jW+DcLH3VA6sDbeECyEkEokMDAwMDg7SJ10ymQx9BYBIJKLr+sa3R7gAAJTJnnB58cUX9+zZQ6/M3bdv38LCwsa3QbjYeyoH1oaLwiWfz9NfjY5Go/QDpdPpSCQSCAQ2/XeIcAEAKJMN4ZLL5V544QX6XMuPf/zjpaWlTW+IjnCx91QOrA0XhQshhOf54eHh1tZWVVXpky70FQCi0aiu6+t+WoRwAQAo080OF0VRzp07d+jQIRouTz75ZOlWuesgXOw9lQNrw13hUvrV6EAgoOt6Pp9PpVKhUIhhmI0vu4hwAQAo02q4CIKgKEqmOul0WhCEraZ0XWdZ9uDBg/SHRI899lhjY2MqlTIxVRFFUayasvBUOzGlqqpzplKpFJ3SNM1pU6Io3oQpURS7u7u7uroikYimaalUir4CQDQaXffP3sJTJZNJQRAkSbJqShRFXdctmdp4DT4AQKVWw4VlWUmSYtURRZFl2a2mIpFIb29v6R7/J06cMD1l4akwtZYgCNZOcRwny7JVp7Jw6iY8VoIgLC4u1tfXj42NraysyLLMcZzf7w8Gg9FodO3nYvlj5bQpnufpY2XjFzsA8IabGi59fX00Wfbs2VNbW/vKK6+YnrLwVBWRJMmBp3L4lKO+g1rYQOV8gqIotrW1+Xy+ubk5+n+GQqFAIBAOh0VRXHcqp9XGTjzsNn6xAwBvWA0XWZZ1XS9UR9d1WZY3ncrn88PDw/SHRHv27HnzzTfpjURvOJXJZKw6VfVTmqY5eSqbzTrnVKqqWn6q6qcsPFVpKpfLbfU2+Xx+ZWWlra1teHhY1/VcLifLMsMw4XCYXtFCKYpywykLT1UmC09VmrLxix0AeMPNuzh3YmLi+eefLz3j0tLSsv0ULs6191QF511Ra+HUTbsM1jCMXC43NjbW19fHMAwhRNO0aDQaCoUEQaB3eSG4OBcAoGw3L1wuX75cuuPciRMnNr13y1oIF3tP5cDacGO4UNFodHBwsL+/P5vN5vN5WZbD4XAkEkmn0/R9ES4AAGW6SeGysrJy+vTp0tMt165du+EUwsXeUzmwNtwbLvl8fnZ2trm5meO4fD6vKArHcfRlF+krACBcAADKdJPC5dSpU7W1tTRc9u3bNz8/f8MphIu9p3Jgbbg3XAghgiAMDQ21trYqipLNZiVJopfoappWLBYRLgAAZbpJ4fLzn/+chsuhQ4cWFxczm90qdx2Ei72ncmBtuDpccrkcwzDnz58PBoO6riuKwrJsIBCgl74iXAAAyrTj4aIoyvnz5x955BH6dMujjz6aTqfLmUK42HsqB9aGq8OFEJJIJHp7e3t6ekRRzGQyoij6/X6O41RVVVUV4QIAUI4dD5dYLFa6wf8jjzxy4cIFTdPKmUK42HsqB9aG28Mlm81yHHf16tWFhQVVVdPpNMMwwWAwHo+n02mECwBAOXY2XDRNm5qaOnjwIA2X48ePx2KxMr8IIlzsPZUDa8Pt4UIIyefz3d3dAwMDHMdls1me5wOBwMrKSjweR7gAAJRjZ8NlZmZm//799KZze/fuPXXqVPlTCBd7T+XA2vBAuBiGIQhCa2vr2NhYNptNJpPBYJDeRVeWZYQLAMAN7Wy4TE5Olu7dcuzYsYmJifKnEC72nsqBteGBcCGEFAqF0dHR3t7eYDCYy+Wi0WgwGGRZlud5hAsAwA3tYLgoitLZ2Vl6uuX8+fPJZLL8KYSLvadyYG14I1wIIdFodGBgoLe3N5fLxePxUCjEMAzHcQgXAIAb2sFwmZmZ+dnPfla6d0tra2tFUwgXe0/lwNrwTLhks9nZ2dm2tjZ689yVlZVgMBgKhSRJQrgAAGxvB8PlypUrpVvlPv3006OjoxVNIVzsPZUDa8Mz4UIIWVlZGRoa6uzsTCQSsizTl4xeWVmp/p8owgUAvG2nwkXX9fr6+tIFLjMzM5VOIVzsPZUDa8NL4ZLL5YLB4BtvvBGJROLxOMdxfr8/HA5ns1n6sou2nGodhAsAONBOhUtdXV3pt6D37NkzOztb6RTCxd5TObA2vBQuhmHE43F6PzqO4+jvRQcCgWQyWWUlIFwAwNt2KlxKV7ccPHiwq6srkUhUOoVwsfdUDqwNL4ULIYT+SlFDQ8P8/Hw0GmUYxu/3S5KUzWZtPNVaCBcAcCDLwkWWyfAweeON/LPPxh97rPvAgadouDz++ONl3uN/HYSLvadyYG14LFwIIdlstqenZ3BwcHFxMRKJ+P3+SCSiqmo1oYBwAQBvsyBcCgUSjZILF8gDD5Df/V3jt34r/u1vP/bDH9JfJjr485//Ip0u6x7/6yBc7D2VA2vDe+FSLBZZlu3s7BwaGopEIsFgMBgMxmKxap50QbgAgLdVGy6GQRIJ8sIL5FOfIrfcQt71ruL73y8++OCP6dMt3/jGL44cIakUMXG5IcLF3lM5sDa8Fy6EEMMw+vr6Ojo65ufnI5FIIBCIRqOqqtp7KgrhAgAOVG248Dw5c4b84R+S972P1NSQj3986d///ekf/nA/vSb37//+1c9+lrz5JhGEik+GcLH3VA6sDa+GSyQS6e7u7ujo4HmeYZhQKFTNZ4pwAQBvqzZcrl0j999PPvABcsstpKaG3HvvtR/8YM//P93y1Gc+0/LBD5L//E8yN1fxyRAu9p7KgbXhyXChRxodHW1oaFhYWGBZlmGYlZUV00+6IFwAwNtWw0UQBEVRMhXq6Mj90R8V3/MeUlNDamrIffddo7f437Nnz9/8zRsf/CDz3veSz3++2N2drXRZURRBEMydap10Ou3AqVQqRadUVXXglLc/QVEUq59KJpN0StO0KqcWFxdbW1vb29vD4XA4HGYYRhRF209FpyRJsmpKMPHUKwDAO62GC8uykiTFKlRfn/rkJ4u33vqrcLnrLv83vvHcD36w77/+67Hf//2+mhpy223k3nsLV66kKl0WRZFlWXOnwpRpgiBYO8VxnCzLVp3KwilHPVbhcHhwcPDs2bPz8/OBQMDv9zMMY27W8ofdkime5+ljZeMXOwDwhvXhEq/QxYvpteFSU0PuuCPxwAOHv/CFS7/5mywNl/vuK1y9mq50WZKk0neFSt/3JkzJslzl1Nra8ORU6duehaey6mGn34wdNTU3N1dfX9/f37+wsEB/vSgajZpYLj3ssVisylNZPoVwAYDqrYaLJEmZTKZQoZ6e4p/9mVH6UVFNDbnllsIHPyjcfnvq1ltzNTXkve8lf/EXxsBAsdJlXdclSTJ3KldMaZpm+amy2axVp6p+SlVVa08ly7JVp7J2KpfLVT/Fcdzk5OTbb789OzvLsmwwGFxZWdF13dypYrFY9adSFIVO5fN5S6YkSbLxix0AeEO1F+cuLJDaWvKRj5B3v3u1XdZEDPnIR8j+/WRpaZP3HR4e/sb/e/DBB19//fXSX01PT7/66qvHjx+PRqO4ONeWUxWcd0WthVNxJ12cS6ckSeI4rrm5eXR01O/3h0KhUCiUTqcrPScuzgUAb6s2XBIJ0t5OvvQl8qEPbRIuH/oQ+eIXic9HkslN3vf8+fN33HHHf/zHf3z3u9/9+te/vm/fvoWFhUKhcOHChccee+w73/nON7/5zVAohHCx5VQOrA1vh0ssFpMkaWZmpqura2Jigr7soiiKld6MDuECAN5mwZ1zVZWcPUu++EXyiU+QO+8kt91GbruN3Hknuftu8pWvkLNnia5v/o7nz5//xCc+IYoiIaSrq+vIkSO/+MUvdF3/7//+7wceeOChhx5CuNh4KgfWhufDJRaLpVKpzs7Onp6ecDgcCAQikYiiKBXtI1wAwNsse62i6Wny5JPkz/+8+NGPFj/60eIXvmD89KdkZma7d1kbLgsLC6+//vqRI0fo7Sui0egvf/lLhIuNp3JgbXg+XOip5ubment7JyYm6KsX0augbDkVwgUAHMiycMlkiCiShYXc0FByaCi5uJiXJLL919u14dLR0fHcc881NzfTJ8YRLrafyoG1sUvCJZlMDg0NNTQ0sCzr9/s5jqvoZnQIFwDwNsvChaooEc6fP3/77bf/4z/+49e//vUHH3zw5MmTPM/TL5EIF9tP5cDa2CXhks/nl5aW2tvbJycn6Q1dZFku/79ZhAsAeJvN4XLnnXfef//93/ve955//vnR0dHSXyFcbD+VA2tjl4QLISQWi01OTl69enVxcbHSl11EuACAt9kcLqUfFa2DcLH9VA6sjd0TLoVCIRKJXLhwYWpqamlpKRwOx2Ixo7zXWEe4AIC3OTFcMpmM3+9/5ZVX/vVf//X69euqqpb5JduSU5U5hXBx9ZTDw4UQkkqlRkZGOjo6ZmZmgsEgx3G6rpfzPwSECwB4mxPD5Zvf/OZ999330Y9+9P3vf/+99977v//7v5FI5KadqswphIurp5wfLvl8PhaLXbx4cWhoaHl5mWGYMj8QwgUAvM3OcAmFQhcuXNj4q56tra2nT58+derUiy+++OKLL05MTKTT6Zt2qjKnEC6unnJ+uBBCstns0NBQd3f3xMQEfQWATCZzw4+FcAEAb7MzXLaXy+Usrw2ES/mncmBt7LZwKRaLKysrnZ2d3d3dS0tLDMOkUqkbHhvhAgDehnAxOYVwcfWUK8KFEFIsFoeGhtrb26empvx+P8/zN7wZHcIFALwN4WJyCuHi6im3hAshhOO4/v7+1tbW5eXlUCiUSqW2/3AIFwDwNoSLySmEi6unXBQuuVxuenr68uXL165dW1paEkVx+yddEC4A4G0IF5NTCBdXT7koXAzDiEajvb29TU1N8/PzLMum0+ltfi8a4QIA3oZwMTmFcHH1lIvChRCiadri4uL58+cnJiboyy5u8y8Z4QIA3oZwMTmFcHH1lLvChRAiSVJjY2N3d/fMzAzLsoqi3IRTIVwAwIEQLianEC6unnJduOi6vrS0dPHixZGREfqyi1t9UIQLAHgbwsXkFMLF1VOuCxfDMFRVbWho6Orqmp2dZVlW07RNr3RBuACAtyFcTE4hXFw95bpwIYQUCoXp6em2traBgQGGYWKx2KYfF+ECAN62Gi6CICiKoldHURRBEARBSKfTVU6l02nLp6r/BC2cSqVSlk+pqurhKVEUq59KJpPWTlnyCZamNE3b6m00TeN5vq2tra2tbX5+PhKJpFKpjR+69AluM1WmRCJh1VTpE7Txix0AeMNquLAsK0lSrDqiKLIsiyn3TgmCYO0Ux3GyLFt1KgunXPpY9ff3NzU1DQ4O+v3+aDS68UNb/rBbMsXzPH2sbPxiBwDesD5c4tWRJKn0pdyqKVmWq5wqfV+vfmonPkFHTVn4WNEp+m3Pk6cqfV+PxWJWneqGU36/3+fzNTQ0LC8vh8NhURR37lSWTyFcAKB6q+EiSZKu68Xq6LouSZIkSfRlbKuRyWSsmrLwVJqm0alsNoupmzwly3Iul3POlKqq9AkPq6bKOVUul5uZmbl8+fL4+HggEIjH4+seXstPZeGUJEk2frEDAG/Axbkmp3Bxrqun4i68OLckGo329fVdvXp1fn5eEARd13foVLg4FwAcCOFicgrh4uopV4cLvZFuXV3d6OgowzDJZHLtARAuAOBtCBeTUwgXV0+5OlzI/99It62tbWZmRhCEbDa7E6dCuACAAyFcTE4hXFw95fZw0XV9aWnp3Llzg4OD4XA4lUrtxKkQLgDgQAgXk1MIF1dPuT1c6I10L1++TJ90EUWxUCjQG+kiXADA2xAuJqcQLq6ecnu4EELy+fz09HRjY2Nvb28kElEUhR4D4QIA3oZwMTmFcHH1lAfCxTCMRCLR0dHR0tIyPz8vy3I+nzcMA+ECAN6GcDE5hXBx9ZQHwoWamppqaWnp6+tjWZbehwnhAgDehnAxOYVwcfWUZ8IlFov19fVdunRpeXk5Ho/n83mECwB4G8LF5BTCxdVTngmXYrE4Ozt7+fLlwcFB+qQLTQSECwB4FcLF5BTCxdVTngkXQgjP8/39/ZcuXVpYWEgkEoqiIFwAwMMQLianEC6unvJSuNB7utTV1Y2MjLAsm0gkEC4A4GEIF5NTCBdXT3kpXAghsiy3trbSXy8SRRHhAgAehnAxOYVwcfWUx8JF13W/33/u3LmhoaFIJCIIAsIFALwK4WJyCuHi6imPhUuxWFRVtaGhoaOjY3Z2NhqNIlwAwKsQLianEC6unvJYuBBCCoXCzMxMU1NTX19fJBKRJKn6TxDhAgAOhHAxOYVwcfWU98KldCPd1tbW+fl5nucRLgDgSQgXk1MIF1dPeS9cqImJiebm5t7e3nA4nM1m6csumoZwAQAHQriYnEK4uHrKq+EiCEJnZye9kW7pZRdNQ7gAgAMhXExOIVxcPeXVcCkUClNTU5cuXRocHBQEocp/8AgXAHAghIvJKYSLq6e8Gi6EEIZhOjo63n777eXlZVVVq/lpEcIFABxoNVwEQUin03p10um0IAiCICiKYtWUo06VSqWcPKWqqrenqn+sksmkIAiiKFZ/KmdO8Tw/NjZ29uzZsbGxlZWVah6xRCJBT6VpWpWnop+gIAg2frEDAG9YDReWZSVJilVHFEWWZTHl3ilBEKyd4jhOlmWrTmXhlIcfq7m5uUuXLrW1tV2/fl0QBNObFp6K53n6WNn4xQ4AvGE1XDiOkyQpXh1JkjiOs2RKFEXLp2RZrnKq9AlaOGXhw179qSx8rOgUrQ2nncqSKUEQLD9VLBar/lSBQGBwcLCurm50dLSaTXqqaDRqyanoJ2jjFzsA8IbVcJFlOZPJFKqj67osy46dymaznpzSNM3yqVwuh6lypmKxWPVTqqrSqXw+X/2UJEmRSKS+vt7n8/n9flVVnXAq+rDb+MUOALwBF+eanMLFua6einv34lw6JYriyMhIY2Pj6OhoIpEwd4kuLs4FAAdCuJicQri4esrz4SLLMs/zLS0tHR0dDMNks1kTUwgXAHAghIvJKYSLq6c8Hy7xeDyfzw8NDdEnXVKplIknXRAuAOBACBeTUwgXV0/thnApFovhcLijo6OxsdHcSxchXADAgRAuJqcQLq6e2iXhkslkxsfH33777enp6WQyWek5ES4A4EAIF5NTCBdXT+2ScDEMg2EYn8/X1NQUjUYrvdIF4QIADoRwMTmFcHH11C4JF0JIMpmcmpqqq6ubm5tLpVIVHRXhAgAOhHAxOYVwcfXU7gmXQqFA7+nS3d3NsmxFT7ogXADAgRAuJqcQLq6e2j3hQghJpVIjIyMXL16cm5tTFKX8KYQLADgQwsXkFMLF1VO7Klzy+TzP8+fOnevr64tGo+X/I0G4AIADIVxMTiFcXD21q8LFMAxN07q7u1taWmZnZzVNK3MK4QIADoRwMTmFcHH11K4KF0JIoVAIBAJNTU29vb2iKJZ5YIQLADgQwsXkFMLF1VO7LVwMw9B1vaurq7m5+fr162VeootwAQAHQriYnEK4uHpqt4ULNT8/39ra2t3dXWaLIFwAwIEQLianEC6untqd4RKPx3t7e99+++1QKFTO/xYQLgDgQAgXk1MIF1dP7c5wyefzc3NzTU1N/f395XwshAsAOBDCxeQUwsXVU7szXAzDEARhYGCgvr4+FAplMpntpxAuAOBACBeTUwgXV0/tznChf7uwsHD27Nnx8fEbFgnCBQAcCOFicgrh4uqpXRsuxWJREIS2trampqZgMLj9ky4IFwBwIISLySmEi6undm240JvRLS4unj17dmJiIpVKbTOFcAEAB0K4mJxCuLh6ateGCyGkUCjEYrGGhgafzxcMBrf5N4NwAQAHWg0XQRDS6bRenXQ6LQiCJVOpVMqqqdKpFEWx6lSYuqFkMmn5lKqqnpxKJBLWnkoURU3TNn0DTdOSyeTo6OjVq1dHRkZisdgNpyz8BG38YgcA3rAaLizLSpIUq44oiizLYsq9U4IgWDvFcZwsy1adysIpbz9W20/JshwMBhsaGtrb2wOBwFZvaeGpeJ6nj5WNX+wAwBtWw4V+eYpXR5IkjuN2w5QkSQ48lQOnaG0451SiKNKpWCzm4aloNLrNVCwWkySpp6ensbFxaGhIEIRN30wQhBtOlYlOcRxn4xc7APCG1XCRZTmTyRSrk8lkZFm2ZErXdTqVzWY9eSpnTmmaRqdyuZwnT0WnYrGYM6fy+fzNmSoUCqFQqKOjo7m5WZKkTd9YVVWrTkWnZFm28YsdAHgDLs41OYWLc109Fd/FF+eWpNPp0dHRy5cvz8zMaJpmGMa6N8DFuQDgQAgXk1MIF1dPIVwIIYVCwe/3t7e3t7a2yrK88R8PwgUAHAjhYnIK4eLqKYQLFY/Hx8bGzp07t7y8rKrquiddEC4A4EAIF5NTCBdXTyFcqFwuxzDMhQsXent7BUFY9y4IFwBwIISLySmEi6unEC6UYRiJRGJwcLC+vn5paWndKwAgXADAgRAuJqcQLq6eQriUZDKZUCj01ltvDQ8PS5K09qdFCBcAcCCEi8kphIurpxAuJcViMZVKtbe3t7W1LS4urv3fCMIFABwI4WJyCuHi6imES4lhGLlc7vr16w0NDYODg8lksvRXCBcAcCCEi8kphIurpxAuaxmGkU6n29raWltbGYYpvSPCBQAcCOFicgrh4uophMs6+Xx+amqqubkHoL0AAAljSURBVLm5v7+/dDM6hAsAOBDCxeQUwsXVUwiXdYrFIs/zPT09V69ejUaj9BgIFwBwIISLySmEi6unEC4baZo2NTV15cqVsbExejM6hAsAOBDCxeQUwsXVUwiXjQqFQjgc7uzsvHTpUjQazeVyCBcAcCCEi8kphIurpxAum1JVdWZm5vXXX5+bm1MURVVVhAsAOA3CxeQUwsXVU7YnwlZT9p4qn89HIpGGhoa2tjaWZRVFQbgAgNMgXExOIVxcPWV7Imw1Ze+pDMNIJpOTk5Pnzp2bm5ujjznCBQAcBeFicgrh4uop2xNhqynbT5XL5SIR7uTJxmPH5p5+OvHoo9oTT+ivvWaMj5N43PypEC4AYBWEi8kphIurp5yQCJtO2X4qVS2Oj6vf//71P/7jlY99TH/f+4of+IDxmc+Q732PvP024TiTp0K4AIBVEC4mpxAurp5yQiJsOmXvqQoFMj9P9u8nH/oQede7jJoaUvrPu99N/vRPycmTJJsla16HsVwIFwCwCsLF5BTCxdVTtifCVlP2nmphgfz0p+See8itt76jWuh/7ryT/O3fksZGomkVnwrhAgBWQbiYnEK4uHrK9kTYasreUzU1ka98hbznPeRd71pfLTU15JZbyCc/SR56yMzFLggXALDKargIgpBKpbTqpFIpQRAEQUin086ZSqfTdEpRFKtOhakbSiaT3p5KJBJ0SlVVS6ZEUax+qvQJmph66aXspz5V3Jgspf984APG3/1dIRTSK10uPVY2frEDAG9YDReWZSVJilVHFEWWZTHl3ilBEKyd4jhOlmWrTmXhlLcfK3NTR46od921Xbjcfrvxuc/lr19PVLrM8zx9rGz8YgcA3rAaLvQrXaI6kiRxHMdxnCRJVk1ZeCpHTYmiaPmpYrGYVVOOOpUzH6vSqayaikaj9k79z/9oH//4duHyvvcZf/In+YWFZKXLgiDQx8rGL3YA4A2r4SLLcjabLVYnk8nIsizLciaTsWrKwlNVP6XruuVTuVzO26dy1JSmafSpiHw+b9WUo06lqqrpqddfNz772S2rpaaGfPjD5GtfM3je5KlkWbbxix0AeAMuzjU5hYtzXT1l+2WwW01ZdapwOPytb33ry1/+8pe//OWvfe1rtbW1NBoSicTVq1fpnz/55JMTExNr37e/n9x/P7n99s0vzr31VvLpT5PnnyepVMWn0nBxLgBYBOFicgrh4uopz4fL8vLy3Xff/Q//8A8PP/zw97///X/+53/2+XzxeHxkZOTZZ599+OGHH3744X/7t387ceJEfM3vCPE8qasjf/VX5Nd/fZNwuece8p3vkJkZYuJ/RggXALAKwsXkFMLF1VO7JFzOnTtHCAkGg0eOHDl27NjS0lJfX9+ZM2foWx48ePDw4cN+v3/tu3McOXmS/PVfk7vvJnfeSd7zHvJrv0Z+4zfIpz9NvvMd0tFh8lQIFwCwCsLF5BTCxdVTuypcRFG8ePHi4cOHZ2dn177lqVOnTp8+zTDMuoVcjoyMkIcfJn/5l8Xf/u3Cpz5V+OpXjddeIxvesAIIFwCwCsLF5BTCxdVTuypclpeXH3/88fPnz6/7pZ4f/vCHzz333Kb/ZrJZEo+TYFCfnU3Mzyd5vqgopJqjIVwAwCoIF5NTCBdXT+2ScPmDP/iDL33pS//0T//0k5/8ZGlpKZPJ0LfJZDJvvfXWCy+80NPTs80UrY1EIlH9J4hwAQCrIFxMTiFcXD21S8Llq1/96o9+9KNnn322s7NT13X6BrIsNzc3Hzt2rKura/vfT0a4AIADIVxMTiFcXD21S8KF/qhorWg02traevTo0cuXL/M8v/0UwgUAHAjhYnIK4eLqqd0ZLvl8/syZMw888MCFCxcYhllZWUkmk9t8RIQLADgQwsXkFMLF1VO7M1xmZ2e//e1v33HHHR/+8Ic/9rGP3XXXXXv27AmFQltNIVwAwIEQLianEC6unvJ8uPA839TUtO5FDZPJ5NjYWP0a4+PjqqpuNYVwAQAHQriYnEK4uHrK8+FiyakQLgDgQAgXk1MIF1dPOS0REC4AAGVCuJicQri4esppiYBwAQAoE8LF5BTCxdVTTksEhAsAQJkQLianEC6unnJaIiBcAADKhHAxOYVwcfWU0xIB4QIAUCaEi8kphIurp5yWCAgXAIAyIVxMTiFcXD3ltERAuAAAlAnhYnIK4eLqKaclAsIFAKBMCBeTUwgXV085LREQLgAAZVoNF57n0+m0Vp10Os3zvNOmUqmUA6eSyaTlU4qiOG1KEATPT6mq6pypRCLh2Kkbvh41AMANrYYLy7KSJMWqI4oiy7KYcu+UIAjWTnEcJ8uyVaeycMrbj5XTpniep4+VjV/sAMAbEC6YegcnfzNGuLh3CuECAFapufGbAAAAADgDwgUAAABcA+ECAAAAroFwAQAAANdAuAAAAIBrIFwAAADANRAuAAAA4BoIFwAAAHANhAsAAAC4BsIFAAAAXAPhAgAAAK6BcAEAAADXQLgAAACAayBcAAAAwDUQLgAAAOAaCBcAAABwDYQLAAAAuAbCBQAAAFwD4QIAAACugXABAAAA10C4AAAAgGsgXAAAAMA1EC4AAADgGggXAAAAcA2ECwAAALjGxnBZ7upatvzDLL/8uZpVn3v5xh/hHe+x6Tt0fXfN5He7LD8zAAAAOM07w6Xru2VmRUXeWS3llMY7mmSzd9hs0vJzAwAAgMPchHD5VYWUwuNX0bH1h/nVG6yWCl1Y8w7r/2DDewAAAIAX7Xy4bLJJO2OrzNjkb+kflUY2maQpg3IBAADwtNVweeePZyyrl00jZftyKXPkHXbmh1wAAADgKJWFy2bXntzgopXNi6KizrjxD4I2/CwJAAAAvKiyHxXd5HBZvQR3qzddPRB+SgQAAOB9O36NizXhslWavKOk8IwLAACAxzk6XNa9/XbvgN8rAgAA2AUc/aOiNdb9XtGWZ0O5AAAAeNiOh4slv1VUxtHMbAIAAIC72HIfl+0/zqZ/uTZLNk8U/EI0AACA5znxzrkbL2hZdwXLJhe04BeiAQAAdoFNwsXy39DZ9AdMG6pj7Ue84Xts+vJHyBYAAACPW//q0KVksPZikXWhsW58syd68KvQAAAAsN76cAEAAABwLIQLAAAAuAbCBQAAAFwD4QIAAACugXABAAAA10C4AAAAgGsgXAAAAMA1EC4AAADgGv8HogSSpJK7zjMAAAAASUVORK5CYII=" alt="" />

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8"/>
<title>Understanding Quadratic Bézier Curve</title>
<script src="js/jquery.min.js"></script>
<style>
body { font-family: Arial, Helvetica, sans-serif; }
</style>
</head>
<body>
<h1>Understanding Quadratic Bézier Curve</h1> <div id="bezier-example-1" style="position:relative;">
<canvas class="curve" style="position:absolute;top:0;left:0;z-index:4;"></canvas>
<canvas class="animation" style="position:absolute;top:0;left:0;z-index:3;"></canvas>
<canvas class="points" style="position:absolute;top:0;left:0;z-index:2;"></canvas>
<canvas class="grid" style="position:absolute;top:0;left:0;z-index:1;"></canvas>
</div> <p id="bezier-example-1-t">t = <span>0</span></p> <script type="text/javascript">
$(function() { var CANVAS_WIDTH = 301;
var CANVAS_HEIGHT = 301;
var p1x = 20;
var p1y = 200;
var cx = 100;
var cy = 20;
var cx1 = 160;
var cy1 = 20;
var p2x = 280;
var p2y = 280; var $t = $('#bezier-example-1-t span');
$('#bezier-example-1').css({
width: CANVAS_WIDTH + 'px',
height: CANVAS_HEIGHT + 'px'
});
var gridCanvas = $('#bezier-example-1 .grid').get(0);
var gridContext = gridCanvas.getContext('2d');
gridCanvas.width = CANVAS_WIDTH;
gridCanvas.height = CANVAS_HEIGHT; var pointsCanvas = $('#bezier-example-1 .points').get(0);
var pointsContext = pointsCanvas.getContext('2d');
pointsCanvas.width = CANVAS_WIDTH;
pointsCanvas.height = CANVAS_HEIGHT; var animationCanvas = $('#bezier-example-1 .animation').get(0);
var animationContext = animationCanvas.getContext('2d');
animationCanvas.width = CANVAS_WIDTH;
animationCanvas.height = CANVAS_HEIGHT; var curveCanvas = $('#bezier-example-1 .curve').get(0);
var curveContext = curveCanvas.getContext('2d');
curveCanvas.width = CANVAS_WIDTH;
curveCanvas.height = CANVAS_HEIGHT;
curveContext.strokeStyle = "#777";
curveContext.lineWidth = 2;
curveContext.beginPath();
curveContext.moveTo(p1x, p1y);
curveContext.stroke(); drawGrid();
drawSetup();
setInterval(updateDemo, 1000/30); var t = 0;
var d = 1; // direction function updateDemo() {
if (t > 1 || t < 0) {
d *= -1; // change direction
curveContext.clearRect(0, 0, CANVAS_WIDTH, CANVAS_HEIGHT);
curveContext.beginPath();
}
t += 0.01 * d; // continue moving
$t.html(Math.round(t*100)/100);
// update values
var c1x = p1x + (cx - p1x) * t;
var c1y = p1y + (cy - p1y) * t;
var c2x = cx + (cx1 - cx) * t;
var c2y = cy + (cy1 - cy) * t;
var c3x = cx1 + (p2x - cx1) * t;
var c3y = cy1 + (p2y - cy1) * t; var c4x = c1x + (c2x - c1x) * t;
var c4y = c1y + (c2y - c1y) * t;
var c5x = c2x + (c3x - c2x) * t;
var c5y = c2y + (c3y - c2y) * t; var tx = c4x + (c5x - c4x) * t;
var ty = c4y + (c5y - c4y) * t; animationContext.save();
// clear old sketch
animationContext.clearRect(0, 0, CANVAS_WIDTH, CANVAS_HEIGHT);
// draw new line
animationContext.beginPath();
animationContext.strokeStyle = '#aaa';
animationContext.lineWidth = 1;
animationContext.moveTo(c1x, c1y);
animationContext.lineTo(c2x, c2y);
animationContext.lineTo(c3x, c3y);
animationContext.stroke();
animationContext.beginPath();
animationContext.strokeStyle = '#666';
animationContext.lineWidth = 1;
animationContext.moveTo(c4x, c4y);
animationContext.lineTo(c5x, c5y);
animationContext.stroke();
// draw points on lines
drawPoint(animationContext, c1x, c1y, 2, '#0f0');
drawPoint(animationContext, c2x, c2y, 2, '#0f0');
drawPoint(animationContext, c3x, c3y, 2, '#0f0');
drawPoint(animationContext, c4x, c4y, 2, '#38f');
drawPoint(animationContext, c5x, c5y, 2, '#38f');
// draw point on curve
drawPoint(animationContext, tx, ty, 3, '#f0f');
animationContext.restore(); // draw the new Bézier curve segment
curveContext.lineTo(tx, ty);
curveContext.stroke();
} function drawSetup() { pointsContext.save();
// lines between p1, c and p2
pointsContext.strokeStyle = "#ddd";
pointsContext.lineWidth = 2;
pointsContext.beginPath();
pointsContext.moveTo(p1x, p1y);
pointsContext.lineTo(cx, cy);
pointsContext.lineTo(cx1, cy1);
pointsContext.lineTo(p2x, p2y);
pointsContext.stroke();
pointsContext.closePath();
// quadratic Bézier curve
pointsContext.beginPath();
pointsContext.strokeStyle = '#999';
pointsContext.lineWidth = 1;
pointsContext.moveTo(p1x, p1y);
pointsContext.bezierCurveTo(cx,cy,cx1,cy1, p2x, p2y);
pointsContext.stroke();
pointsContext.restore(); // circles marking p1, c and p2
drawPoint(pointsContext, p1x, p1y, 5, '#00f');
drawPoint(pointsContext, cx, cy, 5, '#f00');
drawPoint(pointsContext, cx1, cy1, 5, '#f00');
drawPoint(pointsContext, p2x, p2y, 5, '#00f');
pointsContext.fillText("P1", p1x+10, p1y+10);
pointsContext.fillText("C", cx+10, cy-5);
pointsContext.fillText("D", cx1+10, cy1-5);
pointsContext.fillText("P2", p2x-20, p2y+10);
} function drawPoint(ctx, x, y, radius, color) {
ctx.save();
ctx.fillStyle = color;
ctx.beginPath();
ctx.arc(x, y, radius, 2 * Math.PI, false);
ctx.fill();
ctx.closePath();
ctx.restore();
} function drawGrid() {
gridContext.save();
gridContext.strokeStyle = '#ddd';
gridContext.lineWidth = 1;
for (var i = 0; i < CANVAS_HEIGHT; i += 20) {
gridContext.beginPath();
gridContext.moveTo(0, i);
gridContext.lineTo(CANVAS_WIDTH, i);
gridContext.stroke();
}
for (var i = 0; i < CANVAS_WIDTH; i += 20) {
gridContext.beginPath();
gridContext.moveTo(i, 0);
gridContext.lineTo(i, CANVAS_HEIGHT);
gridContext.stroke();
gridContext.closePath();
}
gridContext.restore();
}
});
</script>
</body>
</html>
上一篇:CentOS 下环境变量


下一篇:Django REST framework+Vue 打造生鲜超市(五)