Partial Tree
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://codeforces.com/contest/598/problem/C
Description
You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.
Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.
Input
First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.
The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).
Output
Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.
Sample Input
4
-1 0
0 -1
1 0
1 1
Sample Output
3 4
HINT
题意
给你n个向量,然后问你角度差最小的两个向量是哪两个
题解:
nlogn极角排序之后,再扫一遍就好了
但是这道题会挂精度,所以直接把所有的double改成long double就过了。。
代码
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std; vector<pair<long double,int> > K;
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
long double x,y;cin>>x>>y;
pair<long double,int> KK;
KK.first = atan2(y,x),KK.second = i+;
K.push_back(KK);
}
sort(K.begin(),K.end());
long double ans1 = *acos(-1.0);
int ans2 = ,ans3 = ;
for(int i=;i<n;i++)
{
long double t = (K[(i+)%n].first-K[i].first);
if(t<)t+=acos(-1.0)*;
if(t<ans1)
{
ans1 = t;
ans2 = K[i].second;
ans3 = K[(i+)%n].second;
}
}
printf("%d %d\n",ans2,ans3);
}