论文笔记 Beyond Part Models: Person Retrieval with Refined Part Pooling_ECCV_2018

1. 摘要

使用part-feature 能够起到更好的效果,不过这个需要我们很好地定位part的位置。
本文中作者集中考虑part内部的一致性,提出了 part-based convolutional baseline(PCB)结构以及refined part pooling (RPP)的方法。
刷新了数据集market-1501,DukeMTMC和CUMK03 的state-of-the-art

2. 介绍

作者此篇文章不需要额外的操作,比如一些姿态估计等,直接关注part内的一致性对输入图像进行分part。
PCB结构利用卷积描述子而非全连接描述子(及去掉FC层),对每一个part进行全连接,后接一个softmax分类器。
RPP重新定位part的边缘,利用part内部一致性,调整边缘使得更好地part,使用soft 分割的方法。
论文的贡献主要集中在:
(1)提出PCB的框架
(2)提出RPP的分块方法

3. 方法

PCB pipline

论文笔记 Beyond Part Models: Person Retrieval with Refined Part Pooling_ECCV_2018
PCB 的训练阶段,每个part接一个全连接层,后加一个softmax分类。而在测试阶段,先是cancatenate 各个列向量,
而后进行分类。

RPP

论文笔记 Beyond Part Models: Person Retrieval with Refined Part Pooling_ECCV_2018

考虑part内部一致性,使用余弦距离来度量一致性。在训练时,使用先训练PCB,期望能得到一致分割,而后诱发RPP的训练
论文笔记 Beyond Part Models: Person Retrieval with Refined Part Pooling_ECCV_2018

4. 实验

实验使用三个常用的Reid数据集:market-1501、DukeMTMC-Reid、CUHK03
论文笔记 Beyond Part Models: Person Retrieval with Refined Part Pooling_ECCV_2018
part块数p与诱发训练同attention机制的比较的实验。p=6时最佳,诱发训练能够取得更好的效果。
论文笔记 Beyond Part Models: Person Retrieval with Refined Part Pooling_ECCV_2018

5. 结论

作者使用了PCB的baseline+RPP的分割方法,用卷积描述子代替全连接描述子取得了很好的实验效果。

6. 评价

模型简单,方法想法也比较简明,性能爆炸。这是一个非常好的baseline,另外作者提供了一种新的part分割方法。

7.参考

Beyond Part Models: Person Retrieval with Refined Part Pooling

上一篇:CSS 魔法系列:纯 CSS 绘制图形(各种形状的钻石)


下一篇:CSS学习系列4 -- 再说CSS中的浮动运用及clear:left/right实际用法