another classic DP problem.
2D grid, m*n, each time can only move right or down, how many unique paths from left top to right bottom?
dp[i] [j] represents for the number of ways from 0,0 to i,j
当然 下面的code的空间复杂度可以优化到O(min(m,n))
class Solution {
public int uniquePaths(int m, int n) {
if (m == 0 || n == 0) return 0;
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
63
now we mark 1 in grid as obstacles, and 0 as space, then now how many ways?
dp[i] [j] still represents for the number of ways here, but remember the obstacles, the core state transit functions are the same as before.
so easy peasy.
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
if (obstacleGrid[i][0] != 1) {
dp[i][0] = 1;
} else {
break;
}
}
for (int i = 0; i < n; i++) {
if (obstacleGrid[0][i] != 1) {
dp[0][i] = 1;
} else {
break;
}
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
if (obstacleGrid[i][j] == 1) {
dp[i][j] = 0;
} else {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
return dp[m-1][n-1];
}
}