BNUOJ29065鸣人的查克拉

鸣人的查克拉

Time Limit: 1000ms
Memory Limit: 65536KB
64-bit integer IO format: %lld      Java class name: Main
Prev 

pid=29065#" class="submitprob ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only" style="margin:0px 0.1em 0px -1px; padding:0px; text-decoration:none; font-family:'Trebuchet MS',Helvetica,Arial,sans-serif; font-size:1.1em; border:1px solid rgb(204,204,204); background-color:rgb(238,238,238); font-weight:bold; color:rgb(68,68,68); display:inline-block; position:relative; zoom:1; overflow:visible">Submit

 Status Statistics Discuss 

pid=29066" class="ui-button ui-widget ui-state-default ui-corner-all ui-button-text-only" style="margin:0px 0.1em 0px -1px; padding:0px; text-decoration:none; font-family:'Trebuchet MS',Helvetica,Arial,sans-serif; font-size:1.1em; border:1px solid rgb(204,204,204); background-color:rgb(238,238,238); font-weight:bold; color:rgb(68,68,68); display:inline-block; position:relative; zoom:1; overflow:visible">Next

Font Size: 
+
 
-
Type:  
None Graph Theory 
    2-SAT     Articulation/Bridge/Biconnected Component
     Cycles/Topological Sorting/Strongly Connected Component
     Shortest Path 
        Bellman Ford         Dijkstra/Floyd Warshall
     Euler Trail/Circuit
     Heavy-Light Decomposition
     Minimum Spanning Tree
     Stable Marriage Problem
     Trees 
    Directed Minimum Spanning Tree 
    Flow/Matching         Graph Matching
             Bipartite Matching
             Hopcroft–Karp Bipartite Matching
             Weighted Bipartite Matching/Hungarian Algorithm
         Flow 
            Max Flow/Min Cut 
            Min Cost Max Flow 
DFS-like     Backtracking with Pruning/Branch and Bound
     Basic Recursion 
    IDA* Search     Parsing/Grammar
     Breadth First Search/Depth First Search
     Advanced Search Techniques
         Binary Search/Bisection
         Ternary Search
 Geometry 
    Basic Geometry     Computational Geometry
     Convex Hull 
    Pick's Theorem Game Theory
     Green Hackenbush/Colon Principle/Fusion Principle
     Nim 
    Sprague-Grundy Number 
Matrix     Gaussian Elimination
     Matrix Exponentiation
 Data Structures 
    Basic Data Structures 
    Binary Indexed Tree 
    Binary Search Tree 
    Hashing     Orthogonal Range Search
     Range Minimum Query/Lowest Common Ancestor
     Segment Tree/Interval Tree
     Trie Tree 
    Sorting     Disjoint Set
 String 
    Aho Corasick     Knuth-Morris-Pratt
     Suffix Array/Suffix Tree
 Math 
    Basic Math     Big Integer Arithmetic
     Number Theory 
        Chinese Remainder Theorem 
        Extended Euclid 
        Inclusion/Exclusion 
        Modular Arithmetic 
    Combinatorics         Group Theory/Burnside's lemma
         Counting 
    Probability/Expected Value 
Others     Tricky 
    Hardest     Unusual
     Brute Force 
    Implementation     Constructive Algorithms
     Two Pointer 
    Bitmask     Beginner
     Discrete Logarithm/Shank's Baby-step Giant-step Algorithm
     Greedy 
    Divide and Conquer 
Dynamic Programming

Tag it!

《火影忍者》中,在忍者们使用忍术的时候,须要一定的查克拉(能够看成是一种体力值)。在战斗前,大家都希望提高自己的查克拉。

鸣人发明了一种忍术,能够在短时间内提高查克拉。

在使用忍术前,鸣人须要做一个仪式,这个仪式决定之后每一个时刻的一个查克拉值。这些值的使用规则是:假设在某个时刻发动这个忍术。鸣人须要先消耗该时刻的查克拉值;在某个时候结束这个忍术。鸣人能获得该时刻的查克拉值(忍术必须先发动才干结束)。

当然,假设某时刻鸣人具有的查克拉值少于该时刻的查克拉值。那么鸣人是不能发动该忍术的。

因为鸣人对这个忍术还不能非常好地控制,所以他最多仅仅能发动两次该忍术。而且两次忍术不能同一时候发动,也就是说必须结束一次忍术才干发动下一次(第一次结束时能够马上发动第二次)。

如今仪式已经做完了。鸣人知道了自己的查克拉的初始值,以及各个时刻的查克拉值。假设他最多能够发动两次该忍术(他也能够选择发动一次或者不发动)。那么他最多能达到的查克拉值是多少?

Input

输入数据仅仅有一组,第一行包含两个整数C(0<=C<=100,000)和N(N<=10,000),表示鸣人的初始查克拉值以及仪式决定的时刻的个数。

接下来有N行,第i行包括一个整数Ai (0<=ai<=100,000)。表示第i个时刻的查克拉值。

Output

输出一个整数。表示鸣人在使用忍术后能到达的最大的查克拉值。

Sample Input

Sample Input1
10 5
1
2
3
2
5 Sample Input2
10 2
11
13

Sample Output

Sample Output1
15 Sample Output2
10

Source

Author

zhanyu
#include<stdio.h>
#define N 10100
int main()
{
int C,n,a[N],dp[2][N],min,max,ans;
scanf("%d%d",&C,&n);
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
min=a[0];dp[0][0]=0; ans=0;
for(int i=1;i<n;i++)//从前往后,第i个位结束
if(min<=C)
{
if(min>a[i])min=a[i];
dp[0][i]=a[i]-min;
if(ans<dp[0][i])ans=dp[0][i];
dp[0][i]=ans;
}
else
{
if(min>a[i])min=a[i];
dp[0][i]=ans;
} int sum=dp[0][n-1]+C;
max=a[n-1]; dp[1][n-1]=0; ans=0;
for(int i=n-2;i>0;i--)//从后往前,第i个位開始
if(dp[0][i-1]+C>=a[i])
{
if(max<a[i])max=a[i];
dp[1][i]=max-a[i];
if(ans<dp[1][i])ans=dp[1][i];
dp[1][i]=ans;
if(sum<dp[0][i-1]+C+dp[1][i])
sum=dp[0][i-1]+C+dp[1][i];
}
else
{
if(max<a[i])max=a[i];
dp[1][i]=ans;
if(sum<dp[0][i-1]+C+dp[1][i])
sum=dp[0][i-1]+C+dp[1][i];
}
printf("%d\n",sum);
}

上一篇:pycharm配置QtDesigner


下一篇:201521123026 《Java程序设计》第6周学习总结